关键词:Peirce;科学家;逻辑学家;科学;指号学;化学概念
CharlesSandersPeirce(1839-1914),其一生曾作为“一个美国人的悲剧”〔1〕,现在已经越来越多地被认为是他那个时代、也是美国至今产生的最有创造性、最具多才多艺的伟大思想家。他广博的研究涉及非常不同的知识领域:天文学、物理学、度量衡学、测地学、数学、逻辑学、哲学、科学理论和科学史、指号学、语言学、经济计量学和实验心理学等等。而且这里的许多领域,Peirce在不同程度上被视为倡导者、先驱甚至是“鼻祖”。Russell早就做出评价:“毫无疑问,他是十九世纪末叶最有创见的伟人之一,当然是美国前所未有的最伟大的思想家。”〔2〕而当代在世哲学家H.Putnam称他为“所有美国哲学家中高耸的巨人”〔3〕。
虽然Peirce的思想具有极为广阔的视野,但当今学者所公认、Peirce本人也承认的他的两个主要研究领域却是科学和逻辑学。科学和逻辑学是Peirce毕生付出精力最多的两个领域,也是他在大学毕业后决定他一生将做什么时曾犹豫不决的两种选择。但在其学术兴趣上它们是他的孪生子,二者在理论联系上常常是融为一体,成为Peirce最倾心关注的焦点。而且,作为科学家和逻辑学家的经验是Peirce整个哲学系统构建的基础与出发点,是贯穿他一生思想发展变化的重要影响因素。实际上,科学和逻辑学的共同追求正是Peirce为自己所界定的生活目标。把握他的这一显著特征,我们可考察作为科学家的Peirce与作为逻辑学家的Peirce之间的某些联系。
1科学家职业、逻辑学家志向
从实际从事职业来看,Peirce是位科学家,包括化学家、大地测量员、物理学家、天文学家、工程师、发明家、实验心理学家等等;同时这也是他谋生的门路,是他最早获得学术名声的领域。
成为一名科学家,Peirce具有非常优越的条件;同时这也是他的亲戚朋友尤其是父亲所期望的。Peirce出生于具有良好科学氛围的家庭,特别是其父亲BenjaminPeirce是哈佛大学天文学和数学Perkins教授,也是当时美国最有影响的数学家。Peirce从小由其父亲教授数学、物理学和天文学等学科;其聪颖智慧深得父亲欣赏。而Peirce本人也深受父亲影响,尤其是在父亲1880年去世之后,他极想遵照父亲遗愿而继承父亲的事业,从此专注于科学研究。
在Peirce十几岁时,他已经在家中建立了私人化学实验室,并写出了《化学史》;其叔叔去世后,他又继承了他叔叔的化学和医学图书馆。1859年从哈佛大学毕业后,他父亲安排他在美国海岸测量局(后来改名为海岸和地质测量局)野地考察队作为临时助手学习锻炼了一年;而同时他私下跟随哈佛动物学家LouisAgassiz学习分类学方法。1862年进入哈佛的Lawrence科学研究所,并于1863年毕业获得化学理学士。其间于1861年他再次进入海岸测量局,但这次是作为长期助手;1884年10月至1885年2月主管度量衡办公室;1867年父亲成为海岸地质测量局的第三任主管,Peirce于同年7月1日由助手(Aide)提为副手(Assistant),职位仅次于主管;他的这一职位上一直持续到1891年12月31日,时间达24年半之久。从1872年11月开始,他又负责钟摆实验;在1873—1886年间他在欧洲、美国以及其他地方的站点进行钟摆实验。晚年(1896年直到1902年)主要为圣劳伦斯能量公司做顾问化学工程师。
同时,Peirce在
1867年被安排在气象台从事观测工作,并于1869年被任命为副手。他曾是一次日环食和两次日全食现象的观测者,还负责使用气象台新获得的天体光度计。1871年其父亲获得国会授权进行横跨大陆的地质测量,Peirce由此又成了职业的大地测量员和度量衡学家。
Peirce生前虽只出版过一本科学方面的书(《光测研究》(1878)),为《theNation》杂志撰写的短评、书评现多收集在由Ketner和Cook编辑出版的《ContributionstotheNation》中;但他在海岸地测局和哈佛气象台的诸多贡献已经为他(也为这两机构)在很年轻时就赢得了国际(特别是在欧洲)声誉(Peirce1870年、1875年、1877年、1880年和1883年先后五次接受测量局任务到欧洲考察,同欧洲的许多科学家建立了联系,并极力主张扩大科学界的国际联系)。Peirce于1867年成为美国文理学院的常驻会员,1877被选为国家科学院的成员,1880年被选为伦敦数学学会成员,1881年被选进入美国科学进步协会。而且值得一提的是,现在Peirce已被认为是采用光波长来测定米制长的先驱。
然而,尽管他原本可以很好地专职于科学职业,并有广阔的前景;并且事实上,他也是由化学进入了各种各样的科学部门,并投入了极大的兴趣和精力,成为美国当时杰出的科学家。但与逻辑学相比,它们只是他生命的第二焦点。
从理想志向来看,Peirce视逻辑学为其天职。早年在父亲指导下学习《纯粹理性批判》时就认为康德的失败主要在于其“平庸的逻辑”,要超越康德体系,必须发展一种崭新的逻辑。他声称在12岁时已经除了逻辑别无其他追求;甚至在生活潦倒、疾病缠身的困境中他依然坚持这一工作。他建有自己的私人逻辑史图书馆,他是近代以来少有的精通古代和中世纪逻辑的一位逻辑学家。他自己说,他是自中世纪以来唯一全身心贡献于逻辑学的人,并声称他是终生的逻辑推理学习者。1906年他在美国《WHO’SWHO》中把自己命名为一名逻辑学家,这在当时是绝无仅有的现象。晚年在Milford的Arisbe,他形容自己为田园逻辑学家、逻辑学隐士。与具有美好前程的科学职业相比,Peirce之所以热中于当时不可能成为谋生手段的逻辑学,更多的是出于对自己既定学术目标的追求:要发展一种有前途的逻辑。他对于逻辑的执著和热情,使得他在逻辑学上的贡献并不亚于科学。
年仅二十几岁时,Peirce就开始在哈佛和Lowell学院作关于逻辑学的演讲;从1879年直到1884年,在保持海岸地质测量局职位的同时,他作为JohnsHopkins大学(美国历史上第一所研究生学院)的兼职逻辑学讲师(这是他一生唯一一次获得的大学职位),并在这期间出版了他第二本书(也是最后一本)《逻辑研究》(1883年,Pei
rce主编)。这本书在当时的美国乃至整个欧洲都有较大影响。在1901年,他为Baldwin的《哲学心理学辞典》撰写了大部分的逻辑学词条。
虽然Peirce只有短暂的学院生活来传播他的逻辑理论,但在他那个时代,Peirce已经是一位国际性人物。在五次访问欧洲期间,虽然他是作为科学家去考察,但不仅碰到了许多著名科学家,也会见了当时知名的数学家与逻辑学家,包括DeMorgan、McColl、Jevons、Clifford、Spencer等,还与Cantor、Kempe、Jourdain、Victoria夫人等保持着通信关系。1877年英国数学家和哲学家W.K.Clifford评价“CharlesPeirce...是最伟大的在世逻辑学家,是自Aristotle以来已经为这一学科增加实质内容的第二个人,那另一个是GeorgeBoole,《思维规律》的作者。”〔4〕
而在今天,Peirce学者不断发掘出的Peirce的逻辑尤其是现代逻辑贡献更是值得重视。一般认为,他早期主要是作为一名布尔主义者(Boolean)从事代数逻辑方面的研究,而晚年他的贡献主要集中于图表逻辑方面,主要包括存
在图表系统和价分析法。1870年Peirce的“描述一种关系逻辑记法,源于对Boole逻辑演算的扩充”是现代逻辑史上最重要的著作之一,因为它第一次试图把Boole逻辑代数扩充到关系逻辑,并在历史上第一次引入(比Frege的Begriffschrift早两年)多元关系逻辑的句法。在1883年之前他已经发展了量化逻辑的完全的句法,与直到1910年才出现的标准的Russell-Whitehed句法仅仅在特殊符号上有点不同。
在对于数理逻辑贡献的广泛性和独创性方面,Peirce几乎是无与伦比。与逻辑主义学派的Frege相比,Peirce的特殊贡献不在定理证明方面上,而更多的是在新颖的逻辑句法系统和基本逻辑概念的精制化发展上。他创造了十多个包括二维句法系统在内的不同逻辑句法系统。把实质条件句算子(在他那里的形式为“—<”)引入了逻辑学,比Shaffer早40年发展了Shaffer竖并仅仅基于这一算子发展了一完全的逻辑系统。还独立地系统采用了真值表方法和归谬赋值法,过早地意识到Skolem前束范式的技术。在JohnsHopkins大学教书期间,Peirce开始研究四色图猜想并发展了逻辑和拓扑学特别是拓扑图论之间的广泛联系。
我们看到,Peirce不仅是有着突出贡献的科学家,同时也是著名的逻辑学家。然而在二者关系上,首要的一点是:他承认自己热爱科学,但坦言对于科学的研究只是为了他的逻辑;因为逻辑的研究需要从各种特殊科学(还有数学)的实际推理方法中概括出一般的逻辑推理方法,而决不是仅仅从逻辑书籍或讲课中背诵、记忆和解题;多样化的科学研究正是为了逻辑之全面概括,由它们获得的材料形成了逻辑学的基础和工具。实际上,这种前后的“从属关系”最突出地表现在他晚年常常是以作为科学家的收入来维持从事逻辑学研究的时间。
2逻辑学作为科学
虽然上文表明逻辑学家Peirce与科学家Peirce之间有近乎目的与手段间的主从关系,但事实上并非如此简单,它们还有更为深刻的一层关系,那就是:逻辑学也是科学。很显然,这是Peirce长期的实验室经历已经使得他以科学的方法处理所有问题(他有时的确称自己为“实验室哲学家”)包括逻辑学了。
我们首先看,科学在Peirce那里意味着什么?Peirce看到大多数人包括科学界之外的人都习惯于把科学视为特殊种类的(主要是指系统化的)知识,而他更愿意像古希腊人那样把科学作为认知的方法,但他强调这种方法一定要是科学探究(inquiry)的方法。知识开始于怀疑,为了寻求确定的信念我们必须要解决(settle)怀疑,一般解决怀疑的方法主要有情感方法(求助于自己的感觉倾向)、信忠团体的方法(选择那些最适合其社会团体的那一信念)和尊重的方法(求助于自己对于某特别个人或机构的尊重之感情)等;但这些方法本质上都是自我中心的非客观的方法,它们往往只通过怀疑者自己的行为、意愿来选择信念,缺乏足够的证据。而真正客观的方法只有科学探究的方法,在这种方法指引之下,探究者从经验出发基于科学共同体(community)的合作去寻求真理(TRUTH)或实在(Reality),这也正是科学活动;最终的真理性认识可能并不是由某一实际的探究者所发现,但只要是遵循这种方法、运用先前的结果,最后都必定会一致达到真理的。这正是Peirce在《通俗科学月刊》上发表的两篇经典性论文《信念的确定》和《如何使我们的观念清楚明白》中所阐述的实用主义(与后来James版本的实用主义有很大不同)方法相一致的,事实上如Peirce所指出的,实用主义不是什么世界观,本质上是一种方法,一种科学探究的方法。而与此同时,我们看到,Peirce把逻辑学视为设计研究方法的艺术,是方法之方法,它告诉我们如何进行才能形成一个实验计划;逻辑就是对于解决怀疑的客观方法的研究,是对于达到真理之方式的研究,
其目的就是要帮助我们成为“科学人”。现代科学之优于古代之处也正在于一个好的逻辑,健全的逻辑理论在实践上能缩短我们获知真理的等待时间,使得预定结果加速到来。
但是我们发现,他在思想更为成熟的阶段是把逻辑学的科学属性放置于指号学(Semiotics或更多的是Semieotics)的语境中来考察的,虽然这种处理与以上把逻辑学视为科学方法之研究存在着根本上的一致性。
Peirce不止一次指出,在最广泛的意义上的逻辑学就是指号学或关于指号的理论,仅仅是指号学的另一个名字。〔5〕它包括三个部门:批判逻辑学(CriticalLogic),或狭义上的逻辑学,是指号指称其对象的一般条件的理论,也即我们一般所谓逻辑学;理论语法(SpeculativeGrammar),是指号具有有意义特征的一般条件的学说;理论修辞(SpeculativeRhetoric),又叫方法论(methodeutic),是指号指称其解释项的一般条件的学说。〔6〕这种划分可能受中世纪大学三学科:语法、辩证法(或逻辑学)和修辞的课程设置的影响,指号学在某种程度上可视为对于中世纪后期所理解的逻辑的现代化版本。而我们在此需要强调的是,Peirce把指号学视为经验科学、观察科学。推理就是对于指号的操作,观察在其中发挥着重要作用;指号学同其它经验科学的不同在于它们实验操作对象不一样,在于其它科学的目的仅仅是发现“实际上是什么”而逻辑科学要探明“必定是什么”。但既然是经验科学,根据经验学习的科学人进行逻辑推理所得到的结论就是可错的即准必然的(事实上,任何逻辑必然都只是相对于特定
推理前提而产生必然的特定结论)。
更进一步,Peirce把狭义上的逻辑学(logicexact)分成假设逻辑(abductivelogic)、演绎逻辑和归纳逻辑三部分。显然这比传统逻辑上演绎(必然的)、归纳(可能的)二分的做法多出了内容。Peirce得出这样的结论是对于Aristotle三段论基本格研究的结果,他认为Barbara集中表现了演绎推理的本质,而作为特殊的演绎三段论Baroco(把Barbara中结论的否定作前提、小前提的否定作结论)和Bocardo(把Barbara中的结论的否定作前提、大前提的否定作结论),如果把它们的结论考虑为或然性的,则分别相应于假设推理(abductivereasoning)和归纳推理。但更重要的是,Peirce在此显示出了逻辑学与科学的最合理的紧密联系。在他看来,演绎逻辑也即数学的逻辑,而假设逻辑和归纳逻辑主要就是科学的逻辑。在演绎逻辑已经得到普遍承认的情况下,他终生的愿望就是要把归纳和假设(Abduction)同演绎一起坚固地和永久地确立在逻辑概念之中。在科学探究过程中,假设、演绎和归纳先后组成了三个不同阶段的科学方法,它们的共同作用使得科学探究能自我修正。
Peirce把假设放在首位,作为科学探究程序的第一步,目的在于发现和形成假说。假设是为解释违反规律(或习惯)的意外事实而产生假说的过程,它能产生新信息,Peirce把它视为所有科学研究甚至是所有普通人的活动的中心。但这种假设并没有提供安全可靠的结论,假说必须要经过检验。于是,还需要演绎来解释(explicate)和演示(demonstrate)假说即得出预言;再后由归纳回归到经验,旨在通过观察被演绎出的结果是否成立来证实或否证那些假说,即决定假说的可信赖度。在这连续的三种推理形式中,假设是从意外事实(surprisingfacts)推到对事实的可能性解释,演绎是从假说前提推到相应结论,归纳则是从实例到一般化概括。经过这样的科学探究,我们在科学共同体中将能不断接近真理。
3逻辑学中的化学概念移植
为更具体地论述Peirce的科学研究与逻辑学研究之间的紧密联系,我们在此可谈到Peirce对科学中的许多概念向逻辑学研究的成功应用,这突出表现在化
学上。因为化学是Peirce的大学专业,也是他进入整个经验科学的入口。
逻辑学作为一门特殊的学科领域,事实上从近代以来,就从数学(包括代数和几何)理论那里找到了非常有力的发展动力和理论技术。我们在此谈到的化学概念应用作为整个自然科学概念推广中的一例其实也是Peirce为发展逻辑学而提出的。
首先,Peirce晚年极为倾心的存在图表逻辑构想正是基于化学图表原理(可能还有拓扑学方法的启发)。存在图表是Peirce在其指号学背景下对Euler图和Venn图的重大发展,具有极强的表现力。其在自然、直观、易操作上要远胜于代数方法(包括标准的Peano-Russell记法),因为我们心灵的思想过程被同构地展现在推理者面前,对于图表的操作代替了在化学(和物理)实验中对于实物的操作。化学家把这样的实验描述为向自然(Nature)的质疑,而现在逻辑学家对于图表的实验就是向所关涉逻辑关系之本性(Nature)的置疑。〔7〕
第二个例子,现代逻辑(可能从《数学原理》开始)中的一对基本概念:命题和命题函项(或有时称为闭语句和开语句)原本就是来自化学中的“饱和”(Saturation或Gesättigkeit)和“未饱和”概念。Peirce用黑点或短线来代替语句中的“指示代词”(即逻辑中的自变元),得到形如“——大于——”、“A大于——”这样的形式,它们分别被称为关系述位(relativerhema)(区别于像系词一样的关系词项)和非关系述位,也即他那里的谓词(谓词是几元的取决于我们到底如何选择去分析命题)。他指出,述位不是命题,并坦言“述位在某种程度上与带有未饱和键(unsaturatedbonds)的化学原子或化学基极为相似。”〔8〕然而不无意外,我们发现同时期欧洲大陆的Frege也正在独立地从化学概念得到逻辑研究的灵感。他把诸如“……的父亲”的函项记号称为“未饱和的”或“不完全的”表达式,以与专有名词相区别。〔9〕
另外一个例子是Peirce提出的价分析(ValencyAnalysis)法。正如名字所显示出的,它同化学中的化合价概念密切相关,Peirce所使用的词语Valency直接源于化学中的术语Valence即化合价。价分析是Peirce在图表化逻辑思想指引下于存在图表(ExistentialGraphs)之外创设的另一种二维表现法。其中,显然他是把思想中概念的组合与“化学离子”的组合相比拟,如他采用类似“——”这样的结构表示带有“开放端(looseend)”(即黑点后面的横线)的实体,即谓词;这就是化学中离子结构的简单变形。由于它们的开放端导致的“不稳定”(正像离子本身不稳定一样),开放端之间就可能连接起来形成共同“键”(bond)。如“——”同“——”可形成“——”样式的新结构〔10〕。正是利用这样的离子组键技术,Peirce成功证明了其著名的化归论题,即对于三元以上关系都可化归到三元和三元以下的关系,但一元、二元和三元关系却不能化归。这一论题是他哲学思想体系中所坚持的三分法原则的逻辑证明。
综观Peirce的科学家经历和逻辑学家志向,Peirce把逻辑学视为对于各种科学推理方法的概括,同时又把逻辑学理论指导、应用于科学研究过程。二者紧密相连,互为作用。而更为突出的,他的逻辑贡献大都可追溯到其多样化的科学研究,他的逻辑独创往往也是其科学研究经验的启发性建议。笔者以为,研究Peirce的这些方面,我们至少可得出以下启示:逻辑学应从数学和科学推理实践中概括推理的一般本质;逻辑学家应尽可能学习、掌握科学(传统逻辑就因为没有这样做而失败,科学家非逻辑学家或逻辑学家非科学家都不能胜任于对科学推理的分析工作),因为拓宽自己的科学研究领域必将能加强逻辑学家对于逻辑科学的贡献能力;同时科学家要想更为一般地把握住推理方法也应了解逻辑学
,但是前者在当前学术界值得特别注意。当前处于被冷落地位的逻辑学要想摆脱这种局面,必须加快发展自己;而经验科学(不再仅仅是数学)必能使得逻辑学发展获得新的生命力,这已经是被现代逻辑的发展史(特别是初创时期)所证实的。
参考文献:
〔1〕库克.现代数学史〔M〕.呼和浩特:内蒙古人民出版社,1982年.61.
〔2〕罗素.西方的智慧〔M〕.北京:商务印书馆,1999年.276.
〔3〕HilaryPutnam.PeircetheLogician〔J〕.HistoriaMathematica,9(1982).292.
〔4〕MaxFisch.TheDecisiveYearandItsEarlyConsequences〔M〕.WritingsofCharlesS.Peirce:aChronologicalEdition(Vol.2).Bloomington,Indiana.IndianaUniversityPress.1984.Introduction.
〔5〕〔6〕〔7〕〔8〕CharlesSandersPeirce.CollectedPapersofC.S.Peirce(Vol.1-8)〔C〕.Cambridge,Massachusetts.HarvardUniversityPress.1931-58.2.227,2.93,4.530,3.421.(按照Peirce文献的通常标注法,这里如“2.227”的记法,小圆点前面的数字为卷数,后面的数字为节数)
〔9〕威廉·涅尔,玛莎·涅尔.逻辑学的发展〔M〕.北京:商务印书馆,1985年.624.
〔10〕RobertBurch.ValentalAspectsofPeirceanAlgebraicLogic〔J〕,ComputersMath.Applic,Vol.23,No.6-9,1992.665-677.
Peirce:TheScientistandLogician
数学直觉和数学灵感是数学直觉思维的两种形式。一般认为,数学直觉是运用有关知识组块和形象直感对当前问题进行敏锐的分析推理,并能迅速发现解决问题的方向或途径的思维形式。知识组块在人脑中的表征应是丰富多彩的。不同人对同样的知识表征方式不一定相同,但它是抽象、形象的组合,组块思维是直觉的基础,而直感则是直觉的形象成分,数学直觉是一种直接反映数学对象结构关系的心智活动形式,它是人脑对数学对象事物的某种直接的领悟或洞察。并非数学家才能产生数学直觉,对于学习数学已经达到一定水平的人来说,直觉是可能产生的也是可以加以培养的。
根据小学生身心发展的特点可知,小学生的直觉思维特点表现在他们正处在从具体形象直觉思维向抽象逻辑直觉思维过渡的阶段。这里所说的抽象逻辑直觉思维,主要是指形式逻辑直觉思维。低年级的学生形象直觉思维很发达,他们对事物的感知还大多停留在感性和直观的阶段,语言区域狭窄,对于数学知识的描述和理解还只能大多采用生活语言或者借助具体事物,缺乏数学语言的训练,尤其是刚入学的学生的语言不规范、不准确、不完整但他们善于模仿。到了中、高年级正是发展学生抽象逻辑直觉思维的有利时期,学生在经过老师系列训练之后,建立了初步的数学概念体系,而且能够利用这些概念进行比较、分析、综合、判断和推理。尽管小学数学虽然内容简单,没有严格的推理论证,但是有一个从形象逻辑向抽象逻辑逐步发展的轨迹,在小学高年级,小学生已经能够初步理解体系化的小学数学,并在这个体系内解构数量关系,推理解题过程,并得出经过系列逻辑直觉思维过程后的结果。以上主要视之小学生形式逻辑直觉思维的特点,而至于辩证直觉思维,从直觉思维科学的理论上说,它属于抽象逻辑直觉思维的高级阶段;从个体的直觉思维发展过程来说,它迟于形式逻辑直觉思维的发展。据初步研究,小学生在10岁左右开始萌发辨证直觉思维。因此在小学不宜过早地把发展辩证直觉思维作为一项教学目的,但是可以结合某些数学内容的教学渗透一些辩证观点的因素,为发展辩证直觉思维积累一些感性材料。扎实的数学基础,培养学生进行直觉思维的重要保证。阿达玛曾风趣地说:“难道一只猴子也能因机遇而打印成整部美国宪法吗?”直觉不是靠“机遇”,直觉的获得虽然具有偶然性,但决不是无缘无故的凭空臆想,而应该以扎实的数学基础知识为依托。数学知识具有连续性、系统性、严密性、科学性等特点。小学生有了扎实的数学基础知识,才容易迸发出思维的火花。
灵感是直觉思维的另一种方式,有这种现象:一个学生经长时间思考,仍不得其解,刚要起身向教师请教,却突然“茅塞顿开”,自己一下子领悟到问题的答案。这就是灵感的爆发。由于灵感的思维加工过程有一部分是在潜意识中进行的,所以人们往往意识不到解决问题的过程。
数学直觉和数学灵感之间具有深刻的本质联系,即灵感是直觉的更高发展,是一突发性的直觉,通常灵感的形式是从多次的直觉受阻或产生错误的情况下得到教益,而使一部分知识不自觉地转入潜意识加工,最终又在某种意境或偶发信息的启发下,由潜意识跃入显意识而爆发顿悟的。因此,数学灵感是从多次数学直觉中升华而形成的结晶,而数学直觉又是在多次反复的逻辑思维和形象直感的相互作用下脱胎成长的。
直觉思维在数学学习中不仅客观存在,而且是数学教学的重要内容,对全面提高学生思维水平,特别是创造性思维能力方面可以说是必不可少,它作为数学中分析问题和解决问题的一部分毋庸置疑。数学家渡利亚说:“一个数学的推导,在笛卡儿看来就像一条结论的链,一个相继的步骤序列,有效的推导所需要的是在每一步上直觉的洞察能力。”由于人们习惯于从数学教科书或数学专著中看到数学和数学思维,往往只看到数学高度抽象高度系统化、严格的演绎的一面,忽视了书籍中所表达的是并非真实的、经过整理加工的数学思维活动,忽视了数学形成过程中生动、直观的一面及包含着的大量源于直觉思维的结果,把数学思维能力的培养基本上局限在逻辑思维能力上,无形中造成了对数学思维的偏见。
发展数学直觉思维能力应从小抓起,一来年龄学生直觉思维在整个思维活动中所占成分要多些,是容易因受到鼓舞而使直觉思维得以发展,也易被扼杀,遇到学生说出正确答案而难以说清道理时,老师千万不可不分青红皂白而斥之以“瞎猜”,这样极易对学生直觉思维的发展造成伤害。另外,几何图形为认识周围的世界提供了窗户,几何的图形便于儿童动手、动脑、实验、操作,既有利于他们加深对教学的认识,对几何图形性质的认识,也有利于提高他们的观察能力,发展他们的直觉能力,历来小学数学教学存在的问题之一是强调了数的教育,忽视了形的教育,也忽视了量的教学!无形地在他们幼小心灵中埋下了学数学就是靠一张纸、一支笔的糊涂认识,利用小学大好时光加强几何教学应是改变这种状况的一项刻不容缓的工作。
数学教育包含着美育,数学教学增强了学生的审美意识和能力,反过来,审美意识和能力的增强又促进了直觉思维的提高。现代科学美学的研究表明了审美活动是直觉思维的~种重要形式。科学家的美感推动了他们积极展开直觉思维,发现问题,作出判断和选择,提出假设和猜想。解题需要探索,而探索往往从简单、熟悉、极端情形出发,通过精略估计,再进一步作出假设,其间数学的简单、对称、和谐、奇异往往发挥着重要作用,审美能力与直觉思维能力密切相关,我们在数学教学中既要给予重视,又可以通过努力将二者有机地结合起来,以形成一种交互的良性循环。
[关键词]群体推理,逻辑,群体理性
一、导论
人们通常认为,逻辑是研究推理和论证的规范性的科学。这样的推理和论证是纯形式的,与内容无关的;并且逻辑研究的是纯客观的。逻辑学所得出的逻辑学定律是适合“所有人”的,这里的人是指具有推理能力的理性人。
然而,社会事实是,并非独立地存在许多“个人”,所谓的各个“个人”是相互联系的。这里的联系有多方面的,如生理的、物质的、经济的等等。我们这里关心则是“心灵的”。即:一群人组成的群体被称为一个社会,我们的逻辑是适合该群体中的所有“个人”。存在群体进行推理和论证的逻辑吗?
有人会认为,这样的问题本身是可质疑的。因为,社会虽然是由许多“个体”组成的一个总体,但它毕竟不是如单个人那样的一个“总体”。即社会“总体”本身不是一个自主的像个体那样的单位。这样,没有认知主体,哪来的推理和论证?
认为不存在这样的群体主体的理由是,任何一个群体它本身不说话,它不可能像我们每个人那样思维、表达、论证,甚至争论,除非由一个人说了算的独裁社会,该独裁者“代表”群体的每个人。但一个独裁的社会已经退化到一个人。
的确,确实不存在像单个人的“社会总体”,但这不构成“社会”不能进行推理的理由。对上述反对理由的一个类比反驳是,不存在社会心灵,但同样存在研究群体意识和无意识行为的“群体心理学”。因此,群体推理和论证的逻辑学同样可以存在。
多个人组成的群体或组织的决策与行动方式不同于单个人,它有独特的“规则”。我们不能要求一个群体像一个人那样,否则它就“是”一个人。至于社会的不同于个体的思维、决策过程,正是我们研究的。如,一个群体中“所有人”“知道”“金属导电”,“所有人”“知道”“铁是金属”,那么“所有人”“知道”“铁能够导电”。尽管我们可以用谓词表达式刻画这个推理,但我们将所有人看作一个单位,它便是指某个像个人的单位。再比如,在给定规则下,一个群体要在A、B两个候选对象间表达群体的偏好时,它当然不能或不应该能够得出,“A比B优”并且“B比A优”!再比如,一个群体它不能或不应当做出“从事A”并且“不从事A”行动这两个相互矛盾的决策。前者是关于命题的推理,或者是关于决策或行动的群体推理。
自弗雷格将逻辑学与心理学的研究对象严格区分开来之后,现代逻辑获得了突飞猛进的发展。但逻辑研究的推理和论证是人的许多心理现象中的一种,既然心理学中群体心理学获得巨大的发展,是否存在研究群体推理和论证的逻辑学?
二、从个体认知逻辑到群体认知逻辑
认知逻辑(epistemiclogic)是现代逻辑中的一个分支。认知逻辑刻画认知主体对命题的认知态度(如知道、相信、怀疑等)中的客观过程。如知识逻辑刻画理性的人“知道”的逻辑结构。
逻辑学家发现,刻画群体的认知状态需要新的关于群体的认知逻辑。
博弈论研究有各自目标的两个或两个以上的理性人如何在互动中进行决策。起初,博弈论专家假定博弈中的参与人是理性的——具有使自己效用最大化的推理能力,然而,奥曼(2005年诺贝尔经济学奖得主)等人发现,这样的假定是不够的,我们必须假定,“一个博弈中的每个参与人都是理性的”是该博弈所有参与人组成的“群体”所知道的,即每个人都是理性的是群体中的“公共知识(CommonKnowl-edge)”(或翻译成共同知识)。
什么是公共知识呢?公共知识是相对于某个群体的,某个真命题p是群体G的公共知识,指的是,“该群体”“知道”该真命题p,即CKp。群体知道与群体中的各个成员知道之间的关系如何呢?某个真命题p是群体G的公共知识指的是,群体中的每个成员都知道真命题p(Kip),群体中的每个成员知道他人知道p(KjKip),群体中的每个成员知道他人T他人知道p(KkKjKip)……由此可见,某个命题p是群体的公共知识即群体“知道”p,与p是群体中的每个人的知识即每个人都知道p,是完全不同的两种知识分布状态。
举一个例子。我们假定,对“所有”受过小学以上教育的人来说,他们中的每一个均知道,“4能够被2整除”,即我们假定“4能够被2整除”是所有受过小学以上教育的人的知识;并且我们假定,这也是任何群体的公共知识:如果某个人受过小学以上的教育,他应当知道“4能够被2整除”。对于一个由有限个受过小学以上教育的人所组成的群体而言,“4能够被2整除”尽管是他们的每个人的知识,但不是该群体的公共知识。原因在于,他们均受过小学以上的教育不是该群体的公共知识。很有可能的是,其中有人不知道其他某个人受过小学以上的教育,或者,某人不知道对方知道他受过小学以上的教育……。
所谓公共知识逻辑就是某个群体中的所有人“共同知道”的逻辑。公共知识逻辑其实刻画的就是群体作为一个总体的推理系统,公共知识逻辑有下面这些特征公理:
C1:CK(G,p)p(若p是群体G的公共知识,p是真的);
C2:CK(G,p)∧CK(G,q)CK(G,p∧q)(若p和q是公共知识,p且q也是公共知识);
C3:CK(G,pq)∧CK(G,p)CK(G,q)(若p蕴涵q是公共知识,并且p是公共知识,那么q也是公共知识);
C4:~CK(G,~p∧p)(矛盾式不是公共知识);
C5:CK(G,p)CK(G,CK(G,p))(若p是公共知识,“p是公共知识”也是公共知识)。
C6:~CK(G,p)CK(G,~CK(G,p))(若p不是公共知识,“p不是公共知识”是公共知识)。
对公共知识逻辑的研究是多主体(multi—a-gent)认知逻辑学研究的内容,但它同时是多个学科如计算机、人工智能、博弈论、社会科学关心并研究的内容。
认知逻辑中的公共信念逻辑(commonbelieflog-ic)同样研究群体的推理和论证,在研究群体信念的逻辑中,没有如C1这样的公理,因为信念不必为真。
三、研究群体推理的科学逻辑
科学是理性的活动,但同时是集体性的活动。科学哲学家努力研究科学家的群体推理规则。
那么是否存在适合“所有”科学家的推理规则吗?传统哲学家认为存在这样的东西,这便是“科学方法”,方法论专家的任务即是找到这个方法。这个科学方法包括发现的方法——根据这个方法科学家能够发现真的科学理论和辩护的方法——根据这个方法,某个理论能够得到“证明”。然而,上世纪20年代兴起的逻辑经验主义认为要严格区分发现的范围和辩护的范围。他们认为,不存在发现的方法,但存在辩护的方法。逻辑经验主义试图给出对理论或假说进行归纳辩护的方法。
逻辑实证主义努力给出的归纳证实的方法论标准,以及波普(K.Popper)的演绎证伪的方法论标准,是超科学、超历史的,所有科学家都应当遵守的。
科学哲学中历史主义代表人物库恩则认为不存在这样的方法论标准,任何标准都内在于“范式”,范式是一科学家共同体区别于其他科学共同体的“群体推理规则”。库恩认为,范式是科学活动的基本单位。——所谓范式是科学家共同体共同拥有的东西。在库恩看来,不同的科学家共同体拥有不同的范式。科学的发展表现为范式的变迁。
在库恩那里,科学活动在常规科学时期,科学活动是理性的——理性表现为科学家群体进行理论选择有公认的标准,此时科学家群体对什么样的理论是好的理论、什么是“疑难”等有确定的标准;而科学革命时期,由于没有赤裸裸的观察,任何“观察负载着理论”,科学活动没有理性可言——因不同的科学家共同体有不同的理论评价标准,而不存在中立的、客观的评价不同科学家共同体范式的标准。那么在科学革命时期,理论选择是如何进行的呢?根据库恩的观点,此时的理论选择完全是根据科学家的偏好进行的,而偏好是由范式决定的。
库恩努力告诉我们的是,科学家共同体所拥有的范式本身是一套“群体的推理规则”,信仰同一个范式的科学家群体用这样的推理规则进行群体推理;而不同的科学家共同体因推理规则不同(范式不同)而得出不同的结论。
因此,科学哲学家所力图揭示的是科学家进行群体推理的规则,不同的是,“逻辑主义者”哲学家认为,存在不变的规则;而“历史主义者”则认为这样的标准随群体的不同、历史的发展而变化。四、公共选择理论:研究群体选择的逻辑我们每个人在行动选择时;根据自己的偏好在多个行动中选择有利的行动。这是一个推理过程。然而,一个包含两个或以上的行动者的群体或社会是如何做出共同行动或集体行动决策呢?即:群体是如何进行行动选择的推理的呢?
每个人有自己的偏好,群体行动的选择依赖于群体个人的偏好进行“加总”(collect),以形成群体的偏好。对群体中各个人的偏好进行加总是通过投票来完成的。对群体如何加总个人的偏好的研究是公共选择理论的重要研究内容。
群体的投票规则即是群体的偏好形成的推理规则。如,一个群体对某个提案进行表决时,大多数规则——这是一个简单的易于理解的规则——说的是,一个“议案”若获得投票总人数中的一半以上则获得通过,即在此情况下,“该群体”“认为”该议案获得了通过;或者说该群体“认为”该议案通过比不通过要好。若一个“议案”没有获得投票总人数中的一半,在此情况下,“该群体”“认为”该议案不通过比通过要好。
一个议案或者通过或者不通过,此时,投票群体进行投票便是在二中择一。当一个群体面临的候选对象超过两个(即三个或三个以上)时,情况便复杂起来。人们发明了许多加总投票人偏好的方法。如孔多塞的两两相决的规则,逐步淘汰的黑尔体系(Haresystem)和库姆斯体系(Combssystem),一次性决策的赞成性多数(approvalvoting)和博达记分法(Bodacount)。
逻辑主要是研究推理和论证的。若研究的是推理,在推理中存在前提和结论:前提是已知的,而结论要根据有效推理得出的。在群体投票中,我们根据投票者对某个议案的偏好——这构成推理前提,和投票规则——这构成推理规则,而得出投票结果——它便是结论。这样看来,群体加总群体中个人偏好的特定投票规则便是逻辑学中所说的系统,我们称这种系统为群体偏好推理系统。
在实际中存在不同的投票规则,因而存在不同的群体偏好系统。我们考察逻辑系统时,往往考察系统的完全性和可靠性。群体偏好推理系统的完全性和可靠性如何呢?
对于个体,他所用的偏好关系的推理系统满足完全性和可靠性,或者我们假定它满足完全性和可靠性。研究社会选择的经济学家首先研究理性的偏好关系。偏好关系以“≥(弱优于)”表示。某个理性人认为“a≥b”,表示的是,对于该理性人而言,备选对象a与b相比,a至少与b一样好。经济学家认为“理性的”的偏好关系应当满足完备性和传递性条件:(1)完备性:任何两个备选对象a,b,它们的关系是或者a≥b,或者b≥a,二者必居其一;(2)传递性:对于任意的三个备选对象,如果a≥b,b≥c,那么a≥c。
满足这两个假定的偏好关系的推理系统,如果用逻辑学的术语来说,该推理系统具有完全性——任何两个备选对象都具有一个偏好关系;上面的完备性正是说明了这点;该系统同时具有可靠性——不会产生矛盾的偏好关系;由传递性作保证。一个群体进行推理时,该群体能够做到完全性和可靠性吗?这是下一部分要回答的。
五、群体理性如何得到保证?
群体推理的理性如何保证?
科学哲学家库恩认为,同一个范式下的活动是理性的,因为存在一套为科学共同体中所有人都接受的不相互矛盾的规则体系。此时,科学共同体的理性是能够得到保证的。但在科学革命时期,由于不存在共同接受可以对不同的范式下的规则进行评价的元规则,科学理论之间的竞争是非理性的。这样,不同的科学家群体组成的更大群体的理性得不到保证。
在群体选择中理性是不是也得不到保证呢?
群体的偏好关系推理系统具有完全性和可靠性吗?这个问题涉及到两个方面:第一,群体用于偏好推理的系统能否适合一切可能的偏好组合,这是可靠性问题;第二,该系统进行推理时能否保证不出现矛盾,这是完全性问题。偏好关系推理系统的特性是许多学者所关心的重大问题。
一个极端情况是,加总的规则为独裁规则,即某个人的偏好即群体的偏好,那么将不出现所谓矛盾性的结论。
阿罗证明了,一个群体中的每个人给定偏好顺序的情况下,不可能存在满足下列4个条件并具有传递关系的社会福利函数:第一,定义域不受限制——社会福利函数适合所有可能的个人偏好类型;第二,非独裁——社会偏好不以一个人或少数人的偏好来决定;第三,帕累托原则——如果所有个人都偏好a甚于b,则社会偏好a甚于b;第四,无关备选对象的独立性——如果社会偏好a甚于b,无论个人对其他的偏好发生怎样的变化,只要a与b的偏好关系不变,社会偏好a甚于b不变。
这被称为阿罗不可能性定理。这个定理说明了什么?
这说明了,群体作为总体不可能像个人那样,在任何情况下都能够作出“理性的”排序。孔多塞投票悖论反映的正是这个情况:群体得出了矛盾的结果。
群体投票是群体推理过程,投票规则是群体推理系统。以这样的视角看,阿罗不可能性定理告诉我们,对于有三个以上的备选方案的情况下,群体推理系统不可能既是完备的——适合所有的人的偏好类型,又是可靠的——不出现矛盾性的结论。
作为大学逻辑学教师,我们的首要任务是从事逻辑学的教学,并且以科学研究来促进逻辑学的教学改革,提高逻辑学的教学质量,提升逻辑学的教学水平。20多年来,特别是20世纪90年代以来,中国高等学校中逻辑教学现代化的步子越来越大,步伐越来越快,逻辑教材的建设成就斐然,逻辑教学的改革成果丰硕。其中,王路著的《逻辑基础》[1]和宋文坚主编的《新逻辑教程》[2]和《逻辑学》[3]、中国人民大学逻辑教研室编写的《逻辑学》[4]、中山大学逻辑教研室编写的《逻辑学》[5]以及梁庆寅主编的《传统和现代逻辑概论》[6],何向东主编的《逻辑学教程》[7],黄华新、胡龙彪编著的《逻辑学教程》[8]以及其它许多教材,在逻辑教学内容和体系的改革方面都具有自己的特色。宋文坚教授在《逻辑学的传入和研究》中认为:这些教材“总的特点是:教学体系的框架是按逻辑演算的讲述体系构建起来的;以讲经典逻辑为主,较全面完整地介绍了两个演算,或公理系统,或自然演算,介绍了它们的元逻辑问题,注重阐释现代逻辑的各个基本概念,力图让学生学习逻辑学的新观念。……这些书一般都保留了传统形式逻辑的某些有实际应用的内容,如直言命题的推理,对当关系等”[9]。
在逻辑教学初步实现现代化的过程中,在这些具有时代特色的教材中,我们到底有哪些成功经验值得总结和推广,有哪些问题需要反思和改进?这就是本文中讨论的主题。
1坚定不移地走逻辑教学现代化之路
在20世纪70年代末期,针对我国逻辑教学和研究水平远远落后于国际水平的实际状况,特别是我国大学逻辑教学中所用的逻辑教材内容比较贫乏、陈旧的状况所提出的“形式逻辑要现代化”的口号,主张逻辑教学和研究要现代化,要大量吸收数理逻辑的成果,编写现代化的逻辑教科书。然而,对于这个反映时代要求的口号,逻辑学界不少人并不是完全赞同的。在什么是逻辑教学和研究现代化,如何实现逻辑教学和研究现代化等等问题上,逻辑学界曾经展开了3次较大的争论。在许多次逻辑学讨论会上,双方展开激烈争辩的情景至今仍历历在目,令人难以忘怀。
经过多次激烈的争论,在逻辑教学是否应当现代化的问题上,逻辑学界基本取得了共识,这就是在中国的高等教育中,逻辑教学也要与国际接轨,坚定不移地走逻辑教学现代化之路。上述这些教材,就是中国的逻辑教学与国际初步接轨的一批成果中的典型代表。由于使用了这些教材,在中国的逻辑教学中,特别是大多数高校哲学系的逻辑教学中,现代逻辑已经成为学生的必修课,也已经和正在成为许多高校非哲学专业的文科学生的公共基础课或者公共选修课。现代逻辑正在大踏步地走进我国高等学校课堂,逐渐成为逻辑教学的主流。因此,张家龙先生认为我国的逻辑教学已经初步实现了现代化,这是一个不容争辩的事实。
正是基于我国的逻辑教学已经初步实现了现代化这一基本事实,张家龙会长发出了这样的号召:“我们不能满足于已经取得的成绩,我们要继续前进,在21世纪经过几十年奋斗,中国逻辑学者完全有能力全面实现我国逻辑教学与研究的现代化、与国际逻辑教学和研究水平全面接轨。”
2树立正确的逻辑教学观,促进逻辑教学的改革
王路教授在《逻辑基础》一书的“序”中谈到学习逻辑可以有许多目的。他把这些目的大体上分为3类:一类是通过学习逻辑,掌握一些专门的技术和方法,从而使我们能够应用这些技术和方法解决一些具体的问题;另一类是是通过学习逻辑,培养一种逻辑的眼界和意识,从而使这种逻辑的眼界和意识成为我们知识结构中的构成要素,在我们的工作和生活中潜移默化地起作用;第三类则是通过有关的逻辑知识树立逻辑的观念。“就这三个目的而言,最重要的是逻辑的观念。因为逻辑的技术方法,逻辑的眼界和意识都是围绕逻辑的观念展开的。”[1]
那么,在逻辑教学,特别是现代逻辑教学中,我们应当用什么样的逻辑的观念去指导逻辑学的教学改革呢?
在《逻辑的观念》一书以及一系列的论文中,通过对历史上亚里士多德逻辑和现代逻辑的详尽考察,王路教授认为,从逻辑的内在机制看,逻辑是研究必然性推理即研究推理的前提和结论之间“必然地得出”的关系的:“从亚里士多德到现代逻辑,始终贯穿了一条基本的精神,这就是‘必然地得出’。”[10]王路详尽地讨论了亚里士多德和现代逻辑对于“什么是必然地得出”和“如何才能必然地得出”的问题的解答,树立了一种逻辑的观念,一种对逻辑科学或者逻辑学科的内在机制和根本性质的观念。并且,他反复强调现代逻辑通过构造形式语言和逻辑演算,得到具体的可以操作的方法,以保证我们可以达到“必然地得出”。李小五教授在《什么是逻辑》中指出:“逻辑就是对形式正确的推理关系进行可靠且完全刻画的形式推演系统。”[11]并且,他给逻辑下了这么一个形式定义:“我们称L是一个C--逻辑当且仅当L是一个三元组<Form(L),|=C,├L>使得下面的(1)~(5)成立:(1)Form(L)是语言的公式类:(2)|=C是语义推论关系;(3)├L是语法推论关系;(4)(可靠性)├LΑ|=C;(5)(完全性)|=CΑ├L。”[11]王路和李小五对逻辑(严格地说是演绎逻辑)这门学科或者科学的观念虽然引起了中国逻辑学界一些人的质疑或批评,甚至被扣上“小逻辑观”的帽子。①然而,我认为,这些观念从不同的方面抓住了逻辑这门学科的本质。王路用“必然性”来概括逻辑推理的性质无疑是正确的,李小五从形式语言的语法和语义方面对“必然性”进行了深入、系统的展开。在我参与编著的《逻辑学教程》[7]中,我认为,逻辑这门学科或科学,特别是其最成熟的一阶逻辑,是研究关于某些逻辑词,例如联结词和量词的推理和论文论证中的推出关系或者推理的形式规律即逻辑规律的。从本源上讲,所谓规律,就是事物之间内在的、稳定的、必然的关系。推出关系或者逻辑规律就是推理的前提和结论之间的内在的、稳定的、必然的联系。对于一定范围内的逻辑规律,我们可以在形式语言L中通过定义有前提的形式推演,从形式语言L的句法(语法)方面来刻画这种推出关系(├L),还可以从形式语言L的语义(解释)方面刻画它(|=C),并且证明语法推出关系和语义推出关系的重合性,从而以一系列可操作的规则来保证前提和结论之间的这种推出关系的,保证“必然地得出”。以推理的规则来定义前提和结论之间的语法推出关系,以模型中的指派和赋值来确立前提和结论之间的语义推出关系,并且讨论系统的完全性和可靠性,以明确逻辑的出发点是语义推出关系,逻辑的表现形态是语法推出关系,这就非常自然地刻画了逻辑是研究有效推理的规则的这个思想。而逻辑是研究有效推理的规则的这个根本观念,确实是国际上许多逻辑学家的共识。②
3构造简明易学的逻辑教学系统,普及现代逻辑的基本知识
中国逻辑学会副会长马钦荣教授认为:“有一种现象值得深思,逻辑学界对于传统逻辑的教学议论很多,否定的也不少,但传统逻辑作为课程却大行其道;对现代逻辑赞扬的人多,但开课的学校不多。这里有队伍的问题,也有课程的开发与建设的问题。我们需要有可教可学、有特色、上水平的现代逻辑教材和一批胜任的教师,这是应当引起重视并扎扎实实去做的工作。”[14]。马钦荣教授在这里所谈到的这种现象后面的深层次的原因是什么?怎么建设现代逻辑的教学队伍?特别是怎么建设可教可学、有特色、上水平的现代逻辑教材?这些问题,的确是事关逻辑教学改革成败的关键问题。
1999年6月,在纪念《普通逻辑》出版20周年座谈会上,对于怎样进一步改革我国高校的逻辑教学和逻辑教材,苏天辅先生提出了“普通逻辑数理逻辑化”和“数理逻辑普通逻辑化”2条指导性意见[15]。根据我的理解,所谓“普通逻辑数理逻辑化”,是指在高校讲授的逻辑基础知识的导论课程即“普通逻辑”中以数理逻辑为主要内容,走逻辑教学现代化之路;而“数理逻辑普通逻辑化”,是指必须将数理逻辑这门学科的基础知识,主要是一阶逻辑的基本内容,按照教学规律,特别是学生的认知规律,以深入浅出、通俗易懂的方式表述出来,使之符合导论课的性质和要求。因此,数理逻辑普通逻辑化就是建设教师好教、学生易学的逻辑教材的原则和方法。
那么,怎么才能建设好教易学的现代逻辑教材,实现“普通逻辑数理逻辑化”和“数理逻辑普通逻辑化”,在中国的高校中普及和推广现代逻辑呢?这是每一个关心中国逻辑教学现代化的人不得不认真思考的问题。结合20多年中国逻辑教学现代化的历程,并且对逻辑学的研究方法进行客观的、深入的分析和评价,我们不难找出正确的答案。
在研究各种逻辑词的推理规律的过程中,我们可以采取不同的研究方法。例如,可以通过公理方法从一个公理(或者公理模式)集合和一个推理规则集合来建立逻辑演算;还可以运用自然推理方法从一个推理规则集合出发来构造逻辑的形式系统,把关于某些逻辑词的推出关系纳入这个系统;还可以通过表列(语义图)方法运用一个规则集合来逐个构造某个公式或公式集的反驳,以研究这个公式或公式集是否存在推出关系;还可以通过范式方法来研究一个公式或公式集合的各种性质,特别是该公式或该公式集合的所有逻辑后承,等等。
从理论上讲,在逻辑系统中,例如在命题逻辑中,对于包括否定词、合取词、析取词、蕴涵词和等值词为研究对象的一个形式语言中,这些研究方法得到的推出关系的集合可以是相同的或者等价的。但是,在建立关于某些逻辑词的全体推出关系形成的集合的推演过程中,不同的研究方法具有相当不同的特点,例如,推演的出发点不同,推演的复杂程度不同,特别在是否有明确的推演目标,是否有明确的推演步骤等方面,这些方法是大异其趣的。
就逻辑学的研究方式而言,运用公理方法构建逻辑的形式系统,研究一类类的逻辑词的推理规律,是从现代逻辑创立以来直到今天最常见的研究方式。在历史上,一阶逻辑的形式系统最早是由弗雷格用公理方法建立起来的。其后,罗素、希尔伯特以及海廷所构造的逻辑主义、形式主义和直觉主义的逻辑系统都是公理系统。逻辑的公理系统无疑具有种种优点,特别是在研究某些逻辑词特有的推出规律时,公理系统是十分严谨的,而且在讨论系统的元逻辑性质方面,公理系统更表现出了种种优点。至今,尽管已经发展出了其它构建逻辑系统的方式,然而,公理方法仍然是人们构建种种逻辑的形式系统时最常用的方法,公理系统对逻辑研究的作用是任何人都不可否认的。
但是,在逻辑教学中,我们是不是一定要采用公理方法来构建逻辑的教学系统呢?用公理方法构建的逻辑系统,对于文科学生是否是好教易学的教学系统呢?回答这个问题,必须从公理系统的特征出发进行分析。从公理系统推演出定理的复杂程度和推演的目标、推演技巧方面来看,要求没有受到公理方法训练的学生,尤其是文科学生以逻辑的公理系统为学习对象,是有相当的难度的。逻辑的公理系统是以推导逻辑定理为己任的。由于公理(或公理模式)和/或推导规则的数目不同,从公理推出定理的技术复杂程度也是不相同的。虽然可以采用演绎定理等方式来简化逻辑定理的推演,但是,从技术上讲,公理系统的推演还是比较复杂的。就推演目标而言,从公理推出定理的过程往往是探索性的、试错性的,我们往往没有能行的方式进行定理的推演,特别是用代入规则推演时这个问题就更为突出;就逻辑的核心任务———对推出关系的刻画而言,公理和定理是以逻辑定理或者逻辑真这种不自然的方式刻画前提和结论之间的推出关系的。因此,以公理方法构建的逻辑系统被称为“不自然的逻辑”。①
20世纪80年代在中国的高校中普及和推广现代逻辑时,一些教材,特别是翻译过来的教材采用公理系统作为逻辑学的教学系统。由于对公理系统复杂的逻辑定理的推演过程产生了畏难情绪,许多人对现代逻辑的教学和研究不是采取积极探索而是采取了消极后退的方针,并且产生了对现代逻辑的种种误解和非难,特别是认为现代逻辑不适合中国国情、对人们的思维实践没有什么作用等等。这些误解和非难,就其实质来讲,是不正确的。但是,就教学对象讲,在以大学文科学生,特别是非哲学专业的大学一年级本科生为教学对象时,以公理系统作为基础构建的教学系统似乎并不是最好的选择,这就是马钦荣教授谈到的“逻辑学界对于传统逻辑的教学议论很多,否定的也不少,但传统逻辑作为课程却大行其道;对现代逻辑赞扬的人多,但开课的学校不多”这种现象的深层次的原因。
作为逻辑学的教学系统中,在一阶逻辑,特别是其基础的命题逻辑部分,当然还可以采用范式方法或者表列(语义图)方法判定任一公式A是不是某个有穷公式集的重言后承或者某个公式是否常真式等。然而,以范式方法求取一个公式集合的所有的结论时,常常要使用交换律、分配律、吸收律、幂等律、归约律等逻辑规律进行等值替换,推演过程并不直观、明显。表列(语义图)方法是按一组可行的规则构造一个树形图,以判定某个公式是不是某个有穷公式集的重言后承或者某个公式是不是重言式。跟公理方法和范式方法相比,表列方法无疑具有推演目标明确、推演方法机械和推演步骤简洁、比真值表快速有效等等优点。可是,在实际思维中,人们一般不会通过划真值表、求取范式、构造反驳等等方法来判定前提和结论之间是否有逻辑推论关系的。因此,我们可以在理论研究或者在有逻辑知识的人们中间以这些方法讨论推理的规律,但是,我们不能指望以这些方法来指导人们在日常实际思维中进行具体的推理和论证。
20世纪30年代,自根芩和其他逻辑学家提出了完全以推理规则集合代替公理来建立逻辑的形式系统以来,构造自然推理系统或者自然演算成为构造逻辑演算的另一种选择。跟用公理和定理表示前提和结论之间的推出关系或推理规律相比,以推理规则来表示前提和结论之间的推出关系或推理规律更接近人们的实际思维过程,因此,逻辑学家以不同的方式构建了许多自然推理系统,自然推理系统得到巨大的发展。在自然推理系统中,我们可以从证明论的角度,以推理规则从符号与符号的关系方面建立语法推论关系,而且,我们还可以从模型论的角度,根据指派、赋值讨论公式和公式集的可满足性、有效性,特别是前提集和结论的语义推论关系,并在讨论语法推论关系和语义推论关系的基础上研究系统的种种元逻辑性质如可靠性、完全性等等性质。而且,自然推理系统恢复了逻辑推论关系在逻辑学中的崇高地位,不再把逻辑真作为逻辑学的核心概念,而是把逻辑真看成前提为空的推论关系的一种特殊情况,一种不自然的逻辑推论关系。由于自然演算所具有的种种优点,在构造逻辑的教学系统时,采用这种方法所构造的逻辑系统是适合教学要求,符合教学规律的。
20世纪80年代初期,为了培养现代逻辑方面的教学和研究人员,教育部委托南京大学开办了数理逻辑学习班。在这个学习班上使用了美国著名逻辑学家苏佩斯的《逻辑导论》[17]作为教材。该教材以自然推论方法来建立一阶逻辑的知识系统,不但逻辑知识讲述得非常清楚、明白,而且,还以许多事例来说明逻辑原理的广泛应用,因此是一本非常优秀的教材。但是,该教材是以重言式作为命题逻辑的推出规则的,从证明论的角度讲,以这种方式处理语法推论关系是不够妥当的。而且,该教材没有讨论一阶逻辑的元逻辑性质,这不能说不是一个令人遗憾的问题。其后,北京大学出版社出版了另一位美国著名逻辑学家科庇的教科书《符号逻辑》[18]。这本教材介绍了一阶逻辑的自然演绎系统,也构建了一阶逻辑的公理系统。在讨论自然推理时,该书以真值表为基础,引入了命题逻辑的若干推理规则,详细研究了关于联结词的演绎方法,并且在此基础上介绍了量化理论、关系逻辑,以及命题逻辑和一阶函项演算的公理系统以及它们的元逻辑性质,内容丰富,论述清晰。这2部国际一流的逻辑教材和其它翻译出版的教材,对我国逻辑教材的改革,产生了深刻而且广泛的影响。例如,从人大版的《逻辑学》和以及其它优秀教材如毕富生的《数理逻辑》[19]中,可以看得到这些国外教材的影响。
从传统形式逻辑传入我国开始,我国逻辑教材经历了翻译介绍、消化吸收、自主创新的发展过程。当然,现代逻辑教材的发展也经历了这个过程。上述以现代逻辑为主的教材中,许多教材已经发展到了结合中国大学生,特别是文科大学生的特点讲述现代逻辑的知识,达到了自主创新的阶段。其中,王路的《逻辑基础》特别突出。在《逻辑基础》中,王路以非形式的方法讨论了命题逻辑和谓词逻辑的基本概念、基本原理和基本方法,其论述之清楚、事例之生动、方法之详尽、思路之清晰,在众多逻辑教材中可谓独树一帜。即使是自学者,只要用心一些,也可以轻松地跟随作者一起在一阶逻辑形式证明的大海中遨游。逻辑教材,特别是符号逻辑教材能够写到这个地步,的确是非常难得的了。这本教材,是对逻辑教材创新发展的一个典范,值得所有在大学教授现代逻辑的教师学习和借鉴。
根据我们的教学经验,在以大学文科学生为对象的逻辑教材中,以什么方式讲述现代逻辑的基础知识,培养学生什么样的眼界和意识,特别是树立什么样的逻辑观念,是关系到逻辑教学是否有成效的大问题,也是关系逻辑教学改革是否成功的大问题。王路的教材,虽然没有构建一阶逻辑的形式系统,更没有讨论系统的元逻辑性质,但是,他却通过与人们直观更为接近的方式,分析命题和推理的构成成分,运用有效推理的规则,去分析和解决人们实际思维中的关于联结词和量词的推理和证明的问题,并在这个过程中培养学生逻辑的意识和眼界,树立正确的逻辑的观念。因此,王路把逻辑理论和逻辑的应用紧密地结合在一起,以培养学生的逻辑的观念作为逻辑教学的根本目的。逻辑的具体的推演技术和方法可以上升为学生自觉的习惯,更为重要的是,通过这些推演技术和方法所养成的逻辑的意识和眼界可以内化为学生的素质。学生有了这种素质,也就培养了逻辑精神。而有了逻辑精神,那么,在求知求真的过程中他们就会思索前提和结论、论据和论题之间的联系是否是必然的,是否具有推出关系,是否符合逻辑规律,逻辑的观念从而就根深蒂固地扎进学生的思想深处,成为他们的根深蒂固的思维习惯。
王路在《逻辑基础》中提出了教材的2个使用目的:“一是搞好课堂教学,使之好教、好学、好用;二是便于自学,使之好读、好理解、好掌握。”[1]并为此采取了一系列的措施来落实这6个“好”,特别是不构建逻辑系统,只给出从前提推出结论的推理规则,让学生通过运用推理规则去进行形式证明,从而极大地简化了一阶逻辑的复杂程度。这些措施,真正体现了“数理逻辑普通逻辑化”的原则和方法。笔者认为,王路在《逻辑基础》中所做的有益的探索,就是试图让中国的逻辑教学再上一个新的台阶,达到又一个新的境界的探索。
4培养逻辑精神,突出逻辑学的社会功能就其来源来说,逻辑学来源于哲学论证、法庭辩论、数学推理等等人类的实践活动,是为人类求知求真的服务的工具。逻辑学,包括现代逻辑,也是来源于人类的实践活动,它也应当能够指导人类的实践活动,服务于人类的实践活动。更为重要的是,在逻辑学应用于人类实践活动的过程中,可以培养学生的逻辑意识或者逻辑精神,树立逻辑的观念。
实践性教学是课堂教学的延伸。实践性教学是为巩固、加深和扩展逻辑理论和逻辑应用的知识,通过各种方式使学生在思维实践中运用所学到的逻辑知识去分析问题、讨论问题、解决问题的教学方式。这种教学方式,主要由学生自主进行。通过这种教学方式,可以使学生深刻体会到逻辑学求知求真的精神实质,提高学生的学习能力和科研能力。这种教学方式,可以有如下种种表现形式。
通过组织或参与组织学生运用讲演会或论辩会的形式进行的教学活动。教师让学生自主策划讲演或论辩的题目,设计逻辑框架,寻找论据对论题进行论证、反驳和辩护,对论证进行分析、评估,教师只在必要时加以指导。这种实践性教学方式,非常有利于培养学生在实践中把逻辑知识创造性地进行应用的能力,非常有利于培养和提高学生的逻辑思维素质,树立逻辑的观念,培养求知求真的逻辑精神。
进行案例教学,也是进行实践性教学的有效方式。通过来自社会生活,主要是来自报刊杂志和互联网上的实际事例中包含的逻辑问题的分析,可以使学生深刻体会逻辑学的作用,充分理解逻辑学的社会功能。
实践性教学还可以采用让学生探讨在各门学科中是怎样根据基本概念、基本原理通过推理、论证把这些学科组织成为严密、系统的知识体系的方式进行,也可以通过让学生交流如何运用所学到的关于概念、命题、推理和论证的知识,撰写科研论文的体会和经验的方式进行。
逻辑在数学教学中一直发挥着十分重要的作用,严密的逻辑体系不仅有效的提升了数学教学的效果,同时在素质教育的大背景下,对于提升学生逻辑思维能力也发挥着其他课程难以替代的作用。传统数学教学理念认为,数学即是逻辑,这种理念虽然没有将数学与逻辑学清晰的分解开来,但是却无形中强调了逻辑在数学教学中的地位和作用。
一、逻辑及数学的关系
“逻辑”一词含义非常丰富,它最早源于古希腊哲学体系,原意指思想、辞、规律等泛义的方法性知识体系。现代逻辑学认为,逻辑的主要研究对象是人们的思维形式及其规律和方法。推理形式是人们逻辑思维的一种重要形式,在逻辑学发展的历程当中呈明显的阶段性特征,早期的逻辑学由古希腊时期哲学家亚里士多德创立,发展至19世纪则进入现代逻辑学阶段。现代逻辑学主要是形式逻辑及其相关理论。现代逻辑对逻辑推理规律的研究更加细致,并且数学性质在现代逻辑中越来越明显,数理推理为现代逻辑学的发展提供了更加强大的支撑和推动作用。
数学中所包含的“简单逻辑”是这门学科形成和发展的骨架,它主要是在满足数学教学和学习的需要驱动下,对相关的逻辑知识在理论、思想、方法和语言方面做必要的了解。这些逻辑知识体系主要是学生认知规律的一种体现,同时对他们更加深入和准确的理解各种数学知识具有无可替代的重要作用。当前在数学教学中对逻辑知识体系的介绍和教学发挥着越来越重要的作用,长期的数学教学中虽然也积累的一定的经验,但是随着学科教育的不断发展,无论是教师还是科研工作者不断在思考如何从根本上提升数学教学的有效性和效果。得到的结果必然是在学生思维中首先建立起一个严密的逻辑框架。这样才能使他们更加有效的消化和吸收各种数学推理和思维能力。因此逻辑在数学教学中发挥的作用也越来越明显,越来越重要。
二、数学教学的逻辑透析
数学教学中包含两方面内容,一是教师的教学,二是学生的学习。对于教学而言,教师必须解决“为何教?如何教?”的问题。而学生则也要清晰的认识到“为何学?如何学?”的问题。也就是在数学教学和学习中主体首先要对目的、内容、方法、手段和途径建立一个清晰的框架。这是逻辑知识体系的最基本要求。数学教学与逻辑之间的联系由此开始,数学教学这一过程中本身就包含了教师对教学这一工作的思考和实践,他们首先应对知识本身的逻辑特点有着更加深入的把握,数学知识的逻辑特点同时也是知识发生过程的直接体现。为此,教师应当在对知识特点与逻辑规律进行充分研究的基础上,按照逻辑规律和学生的认知特点开展教学。这样的教学才能称之为有效的教学,符合规律的教学,也才能取得明显的效果。学生在学习过程中也应当把握好知识与逻辑之间的关系。在破解一些数学难题的过程中要充分借助逻辑规律进行推理、假设。如此反复的训练自己利用逻辑这一思维工具的熟练能力。在这一过程中也就顺利的实现了逻辑思维能力形成和发展的良好效果。
三、逻辑在数学教学中的价值
1.在数学教学方法的选择和运用中提供了有效的指导作用。数学教学方法的选择和运用对于提升学科教学质量和效率发挥着十分关键的作用。教师首先应当根据教学内容的需要不断优化和匹配自己的教学方法。教学方法的选取不是随意的,他要根据知识内容的特点和规律进行搭配。同时还要考虑学生现有的知识储备和思维能力[1]。在数学教学中,教师需要将一些概念、命题、逻辑规则和方法介绍给学生,而这些知识虽然隐含在数学知识当中,但是在教材中却很少对其直接讲述。这就需要教师首先要对教材内容做系统的逻辑分析,将知识梳理为一个严密的逻辑体系。将命题和概念划分为不同的逻辑层次,按照由简到繁,由易到难的形式向学生解说。这本身就是一种逻辑思维的体现。教学方法的选择的一个最终的要求就是必须遵循逻辑规律。因此从这个角度来说,逻辑指导了教师教学方法的选择和运用。
关键词:小学数学;图形与几何;教学方法
中图分类号:G622文献标识码:B文章编号:1002-7661(2016)08-248-01
前言:“图形与几何”是小学数学教学当中的重要内容,从中探寻数学原理,认识和描述生活空间,需要学生具有一定的逻辑思维能力,这就需要采取更为有效的教学方法。改变小学数学传统的教学模式,让数学教学更具生活性、操作性和探究性,引导学生自主进行学习和探究,锻炼其思维逻辑推理能力,更好的理解“图形与几何”相关知识点,进而提升数学课堂教学的质量和效率。
一、小学数学“图形与几何”教学的主要难点
小学数学“图形与几何”主要是对物体、几何体和平面图形的初步认识和了解,利用逻辑思维推理,解决实际问题。“图形与几何”是小学数学教学当中的重要内容,从中探寻数学原理,认识和描述生活空间,需要学生具有一定的逻辑思维能力,而学生在“图形与几何”学习所面临的困难就是缺乏严密的推理能力,往往通过生搬硬套的方式进行解题,往往不得要领,对分析能力和思维能力的提升缺乏帮助。这是由于小学数学教学长期在一种固定的模式中,受到应试教育的影响,过分重视学生的学习成绩,而忽视了学生的学习能力和思维能力的培养,反而限制了学生的思维。学生在进行数学学习的过程当中,都是以应试为目的。学生在思维逻辑推理能力方面的欠缺,学习过程中形成思维定式。“图形与几何”具有一定的抽象性,需要一定的逻辑推理能力,这也是解答“图形与几何”有关问题的有效方法和途径。但是受到思维定式的影响,学生只是按照固定的思维和方法进行解题,没有对“图形与几何”更深入的理解和探究,解题过程中就会遇到很多困难[1]。
二、小学数学“图形与几何”的有效教学方法
1、学生思维能力的培养与提升。
培养学生的思维能力,让学生对“图形与几何”有着更正确的认识和理解。在教学过程中,教师需要积极的引导学生,鼓励学生以逻辑推理的方法进行解题,自主探究、自主思索,从中获得规律和经验,并能够应用于实际的解题当中。在面对难题时,教师需要适当的予以帮助,在讲解题目的过程中,学生要参与到证明和推理的过程中,充分表达自己的意见和看法,而不仅仅局限于教师的授课当中,真正做到以学生为主体的小学数学教学。在教师的引导下,学生能够自己探寻解题规律,进而轻松解答“图形与几何”的相关问题,进一步巩固知识点,真正做到学以致用,其效果更优于教师直接教给学生方法,让学生的逻辑推理能力和思维能力得到进一步的锻炼。采取小组交流讨论的方式,相互交流观点和意见,集思广益,积极学习其他同学的计算,将其转变为自己的知识,对提升自身的思维和逻辑推理能力具有良好的帮助[2]。
2、基础知识的夯实与巩固。
在小学数学教学当中,学生对于基础知识的掌握是不容忽视的,逻辑推理不仅仅是一种技巧,更是一种能力,前提是扎实的掌握基础知识点,才能获得更为理想的学习效果,逻辑推理能力也会得到有效提升。教师应该着重加强对学生基础知识点的考察,可以采取突击检查的方式,以更好的了解包括理解点,线,面体等几何图形的概念、特点和原理等,以达到夯实和巩固的目的。学生也可以在该过程中了解自身对于知识点掌握上的不足,及时予以弥补和改进,进而提升数学教学的有效性。
3、联系生活实际。
除了思维能力的培养之外,还需要加强数学的实践应用能力锻炼,这就需要将“图形与几何”与生活实际联系起来,解决生活中实际问题,根据自身的生活体验,自主进行学习和探究,能够更好的巩固基础知识,转变学生对于数学的观念,以更深入的理解和感悟,让生活成为自由、开放的教学环境中的一部分,结合生活实际,鼓励学生自主学习和思考。在教师的启发和引导下,将数学知识与生活实际联系起来,让学生从生活中总结经验,获取知识,学会如何应用数学逻辑推理能力,进而提升数学教学的有效性。比如在三角形的学习当中,了解到三角形是最稳定的图形,就可以从生活实际应用当中进行了解。高压电线杆的支架、自行车的几个梁形成三角支撑以及三角形的屋顶都是三角形稳定性在生活实际当中的应用,学生可以更好的进行理解。将小学数学“图形与几何”的教学与生活实际联系起来,从生活当中找寻数学原理,利用数学知识去解答生活当中的实际问题,有效了丰富教学内容,开拓了学生的学习思维,为学生的数学学习有着积极的帮助作用。
结论:新课程改革的深入进行,引发了新形势下小学数学教学的新思考。围绕着“图形与几何”当中的重难点问题,探寻全新的教学策略,建立开放的教学环境,采用多元化的教学方法,打破应试教育的束缚,着重加强学生思维能力和逻辑推理能力培养,联系生活实际。更好的巩固基础知识,使学生更好的理解和学习“图形与几何”,新形势下小学数学计算教学更加科学、高效,为学生的学习和成长奠定了坚实的基础。
参考文献:
关键词:小学数学;教师专业素养;逻辑素养
在近几年参加的小学数学教研活动中,我们经常发现因教师专业素养不足所导致的各种错误,除不少错误与教师的学科知识素养有关外,还有一些错误与教师的逻辑素养有关,这不得不引起我们的警觉和重视。因此在小学数学教师专业素养的建构中,务必要重视有关数学概念、命题、推理、证明等形式逻辑知识的掌握,谨防在教学中出现各种逻辑性错误。
一、掌握有关数学概念的逻辑知识
1.科学把握数学概念的逻辑定义
在人类的认识过程中,经过抽象形成新概念,由此压缩和简化了语言,加快了思维速度和深度。一个概念引入之后,就要借助语言,将其加以明确、固定和传递,这就要给概念下定义。对数学概念下定义,其基本方式是“种差+属概念”,即把某一概念包含在它的属概念中,并揭示它与同一属概念下其他种概念之间的差别。比如以四边形为属概念,可以分别对平行四边形和梯形下定义。在对概念下定义时,不能循环定义,比如“用两直线垂直来定义直角,又用两直线成直角来定义垂直”,等等。需要注意的是,尽管“种差+属概念”是对数学概念下定义的基本方式,但对小学数学来说并非理想的定义方式,因为小学数学学习大多采用的是从特殊到一般的方式,因此许多数学概念无法严格按照“种差+属概念”的方式定义。比如在小学教材中先教长方形,后教平行四边形,无法以平行四边形来定义长方形。正因此,小学数学教材中的不少概念最初都没有严格定义,只是通过描述性方法来让学生认识数学概念的特征。
2.明确数学概念与定义的逻辑关系
数学概念不同于数学定义。数学概念是从数和形两方面揭示客观事物本质属性的思维产物,它反映了数学概念的内容;数学定义是对数学概念的语言表达,它是数学概念的外壳,反映了数学概念的形式。对同一个数学概念,可以有不同的定义方式。比如对平行四边形,既可以定义为“两组对边分别平行的四边形”,也可以定义为“一组对边平行且相等的四边形”,这主要取决于采用哪种定义,更容易凸显出对象的本质,或更容易被学生理解和接受。当然,这些定义之间是相互等价的。需要注意的是,由于概念的定义具有人为性,因此定义方式不当,便难以反映出概念的本质属性。比如,在小学把“角”定义为“具有公共端点的两条射线组成的图形”,这并未反映出角的本质,因为角的本质并非体现在可见的“图形”上,而是体现在不可见的“张口大小”上。
3.正确认识数学概念的逻辑分类
如果将一个概念的外延集,按照某一属性分成若干个子集,也就是将一个属概念划分为若干个种概念,这就是明确概念外延的方法——分类。被分的属概念称为划分的母项,分得的若干种概念称为划分的子项,所依据的属性称为划分的标准[1]。通过概念的分类,可以使有关的概念系统和完整,同时使被分类的概念的外延更清楚、深刻和具体。但对概念分类时应注意一些问题,比如每次分类只能依据一个标准、分类要不重不漏、不能越级进行分类等。在小学数学教学中,经常有教师会问:菱形是平行四边形吗?正方形是长方形吗?平行四边形是梯形吗?圆是扇形吗?等等。这里就涉及到对概念的逻辑分类问题。概念的逻辑分类必须基于概念的定义。比如在教材中,将正方形定义为一种特殊的长方形,菱形定义为一种特殊的平行四边形,因此正方形也是长方形,菱形也是平行四边形,两者之间是包含关系。但平行四边形并不是用梯形作为属概念来定义的,平行四边形与梯形均是把四边形作为属概念来定义的,因此两者之间是并立关系,把平行四边形当作特殊梯形是不恰当的。至于圆是不是扇形,单从扇形定义无法判别的话,则通常采用约定的方式,即约定一类对象中的退化情形是否属于该类,这里并不涉及正确与否的科学性问题,仅仅是一种约定俗成的人为规定。因此对这类问题,必须具体问题具体分析,并无统一的确定答案。
二、掌握有关数学命题的逻辑知识
1.掌握命题四种形式之间的逻辑关系
为了研究数学命题的条件和结论的逻辑联系,常把一个命题的条件和结论换位,或变为它们的否定形式,这样就可以得到命题的四种形式,即原命题、逆命题、否命题和逆否命题。对互为逆否的两个命题,它们具有同真同假的性质,此特性称为逆否命题的等效原理。因此,原命题与逆否命题、逆命题和否命题具有同真同假的关系。在数学学习中,为了考察一个数学命题的真实性,可以转换为考察它的逆否命题的真实性。比如在某节课上,任课教师引导学生学习了对称图形的性质,即“如果两个点是对称图形的对称点,那么这两个点到对称轴的距离相等。”但在课堂练习环节,在判断哪些点为对称点时,学生认为“因为M和N到对称轴的距离相等,所以M和N是对称点”,教师进行了肯定,之后学生都据此进行判断。这里师生所犯的错误,即是利用了性质命题的逆命题进行判断,但在这里原命题与逆命题并不等价。
2.明晰命题条件和结论之间的逻辑关系
数学命题常常写成“若P则Q”的形式,其中“若P”部分叫做命题的条件,“则Q”部分叫做命题的结论。根据命题条件P对结论Q所起的作用,可以把命题的条件分为以下四种情况,即充分非必要条件、必要非充分条件、充分必要条件、既非充分又非必要条件。命题的条件和结论之间的逻辑关系,与该命题及其逆命题、否命题和逆否命题的真假,显然存在紧密联系。例如在上述案例中,“两个点对称”只是“距离相等”的充分非必要条件,若原命题的条件和结论满足这样的逻辑关系,则该原命题的逆命题一定不成立。3.明确性质定理和判定定理之间的差异性质定理是由概念或公理得到的定理,讨论某个概念的时候,就包含了它的所有性质,所以性质定理的主要功能是描述特征。断定定理是判断所讨论的某事物是否符合某个概念或公理的定理,所以判断定理的主要功能是判断结论。性质定理和判定定理具有互逆的特征,但两者并不一定是互逆的命题。概念本身既是判定定理也是性质定理,且这两个定理是互逆命题。比如平行线的概念,我们可以直接用它来判断两直线平行,也可以根据两直线平行知道它们位于同一平面内且没有交点。从命题的条件和结论的关系来看,性质定理阐述了一个数学研究对象所具有的重要性质,其作用是揭示这个研究对象的某个特征,性质定理给出了结论成立的必要条件;判定定理阐述了结论成立的依据,判定定理给出了结论成立的充分条件。区分一个定理是判定定理还是性质定理,关键是看该定理阐述了结论成立的依据,还是揭示了一个研究对象的某个特征,若定理阐述了结论成立的依据,则是判定定理,否则就是性质定理了。在小学数学教学中,不清楚性质定理和判定定理的关系,教学就会变得盲目,甚至导致逻辑错误的发生。比如教学三角形的性质“任意三角形的两边之和大于第三边”时,有的教师通过让学生用小木棒来摆一摆,最后发现“若两个短的小木棒大于最长的小木棒,则可构成三角形”。这里就把三角形性质的学习,异化成了三角形判定的学习了。要学习三角形的性质,要先给出三角形,再根据生活经验,知道走直线比走折线要近,由此得出三角形的性质,其本质上依据的是数学公理“两点之间线段最短”。
三、掌握有关数学推理的逻辑知识
1.掌握逻辑推理的基本形式
推理是从一个或几个已知判断中得出一个新判断的思维形式。在推理过程中,所根据的已有判断叫做推理的前提,做出的新判断叫做推理的结论。数学推理主要有演绎推理、归纳推理和类比推理。演绎推理是由一般到特殊的推理形式。由于演绎推理的前提判断范围包含结论中的判断范围,所以只要前提是真的,推理合乎形式逻辑规律的推理形式,就一定能得到正确结论。归纳推理是由个别事物所作的判断,扩大为同类一般事物的判断的一种推理形式。按照前提判断范围的总和是否与结论判断范围一致,归纳推理有完全归纳和不完全归纳两种形式。完全归纳可作为严格论证的方法;不完全归纳得到的结论具有或然性,不能用于证明,只能做出假设或猜想。类比推理是根据两个对象的某些属性相同或相似,推出它们的其他属性也可能相同或相似的思维形式。类比推理是思维过程中由特殊到特殊的推理形式,由于条件和结论没有明确的必然联系,故得出的结论具有或然性,它也是一种不严格的推理方法。比如在推导三角形面积公式时,有的教师直接从平行四边形出发进行推导,即画出一个平行四边形,连接对角线,将其一分为二,分割为两个一样的三角形,根据前面所学平行四边形面积公式,由此得出三角形面积公式。这样的教学思路是错误的。其原因在于,尽管平行四边形是任意画出来的,但一旦画出来后,它就是给定的,给定的平行四边形不能确保三角形的任意性,因此推导出的三角形面积公式就不具有任意性了。也就是说,不能用“特殊”代替“一般”,否则就违反了演绎推理的基本要求。在实际教学中,我们可以采用以上这种思路来突破教学难点,即通过对平行四边形的分割,启发学生想到用割补法把三角形转化为平行四边形,但三角形面积公式的推导必须从任意给定的三角形出发。
2.掌握形式逻辑的基本规律
数学的推理与证明,运用的是形式逻辑的思维,因此必须满足形式逻辑的基本规律。形式逻辑有四条基本规律,即同一律、矛盾律、排中律和充足理由律。同一律是指在同一思维过程中,使用的概念和判断必须保持同一性,不得中途变更,违反这条规则的常见错误是偷换概念或偷换论题。矛盾律是指人们在同一思维过程中,对两个反对或矛盾的判断不能同时承认它们都是真的,其中至少有一个是假的,比如a>b和a<b,否则就会出现思维上的前后不一、自相矛盾。排中律是指在同一思维过程中,同一对象的肯定判断和否定判断不能同假,必有一个是真的,比如a>b和a≤b,违反排中律的逻辑错误是模棱两不可。充足理由律是指在思维过程中,任何一个真实的判断必须有充足的理由,如果论题的真实性要靠论据来证明,论据的真实性又要靠论题来证明,其结果是什么也没有证明,违反这条规则的逻辑错误叫循环论证。比如在学习平行四边形时,有的教师先出示了生活中的平行四边形实例,接着让学生动手做出平行四边形,在此基础上抽象出平行四边形的特征。其实,学生不知道平行四边形的特征,便难以做出平行四边形;现在运用其特征做出平行四边形,再反其道探究其特征,这样的教学便有循环论证之嫌。
四、掌握有关数学证明的逻辑知识
1.按是否直接证明命题,数学证明分为直接证法和间接证法
所谓直接证法,指从命题的条件出发,根据已知的定义、公理、定理,直接推证结论的真实性。直接证法是数学中经常采用的方法,在证明过程中,通常要运用演绎、归纳、分析、综合等方法。所谓间接证法,指不是直接证明论题的真实性,而是转化为证明反论题不真;或者证明与论题等效的命题的真实性;或者在互逆命题等效的情况下,通过证明论题的逆命题的真实性,从而肯定论题的真实性。间接证法又可分为反证法和同一法。间接证法是论证数学结论的有力武器,体现了正难则逆、直难则曲、顺难则反的思想。间接证法中的反证法在小学数学中较为重要。尽管在小学数学中没有出现反证法的概念,但反证法思想在分析和解决问题时却经常要用到。比如在直角三角形ABC中,已知∠C是直角,那么要说明∠A一定是锐角,最简单的方法就是应用反证法思想。
2.按思维过程的顺序,数学证明分为综合法和分析法
在数学证明中,为了找到证明的途径,根据思考时推理序列的方向不同,数学证明的方法可以分为分析法和综合法。所谓分析法,就是从结论出发,逆溯其成立的条件,再就这些条件分析研究,看它的成立又需要什么条件,继续逐步逆溯,直至达到已知条件为止,简称“执果索因”。而综合法正好与之相反,它是从题设出发,以已确立的定义、公理、定理、公式、法则等为依据,逐步展开逻辑推理,直到获得所要证明的结论,简称“由因导果”。通常用分析法寻找解题思路,用综合法叙述解题过程。在小学算术应用问题的解决中,离不开综合法和分析法的运用。简单的问题,往往直接应用综合法便可解决;复杂的问题,往往需要分析法和综合法的综合运用。分析法从要求解的结论出发,逐步寻找一系列的“须知”,思维具有目标性和方向性;综合法从已知条件出发,逐步推出一系列的“可知”,思维具有发散性和不确定性。当“须知”和“可知”相遇之后,便成功打通了一条解题通道。
关键词小学数学;逻辑思维能力;培养
一、培养小学数学逻辑思维能力的重要性
逻辑思维能力是创造思维能力的基础,小学数学的教学大纲要求培养学生初步的思维能力。数学科目本身就有很多判断组成的确定体系,包括大量的数学术语、逻辑术语和相应的符号系统,通过逻辑推理,一些理论能够生成新的理论,一些判断能够生成新的判断,数学就是由这些理论和判断组成的。由于小学生受到年龄的限制,思维发展还处于起步阶段,小学数学内容上较为简单,没有很深的推理论证。但是只要学习数学,就离不开判断推理,因此,学习数学的过程就是培养学生逻辑思维能力的过程。小学生还处于形象思维向逻辑思维的过渡阶段,在数学的教学之中去培养学生逻辑思维的能力,有利于培养学生的抽象思维能力,符合小学生思维发展的要求,适应了小学数学教学大纲,更为小学生未来的学习发展奠定了基础。
二、注重思维品质的培养
逻辑思维能力是多层次的,要想培养逻辑思维能力就要多层次、多方面、多角度的进行培养,思维品质的培养对逻辑思维能力的培养有重要的影响,关系到逻辑思维能力的发展。但是思维品质的培养过程是复杂漫长的,教师要时刻对学生进行思维训练,抓住思维品质的特点,来培养学生的思维品质。
(1)思维具有灵活性。思维的灵活性特点表现在思维的主体能够根据思维对象的变化,在已有经验的基础上灵活调整原来的思维方式,使新思维能够更高效的解决问题。对小学数学来说,思维的灵活性非常重要,数学的解题方法不是唯一的,学生在解题过程中能够根据题型的不同转化解题方法,转变解题思路,从而找到更适合的解题方法,主要表现在一题多解、变题练习、同解变形等解题方式。例如:200千克海水能够制盐2.5千克,那么50000千克的海水能够制盐多少千克?这属于一题多解,可以通过2.5÷200×50000;50000÷(200÷2.5);2.5×(50000÷200)几种方法来解。
(2)思维具有深刻性。思维的深刻性就是透过现象看本质的能力,它是思维品质的基础。在小学数学中,主要表现在通过表面现象能够引发深入思考,从而发现问题的内在规律和内在联系,找出解决问题的办法。教师可以通过开放性习题进行思维的训练。
(3)思维具有独创性。思维的独创性是指思维具有独立创造的水平,因此,教师在教学中要鼓励学生大胆想象,寻找多种解题方法,不受到常规的解题模式限制,找出解题最简单的方法。例如:把2.5.6三个数字卡片进行组数,如果按照常规的思维模式,组成的数就只有25.26.256.265.52.56?,除了这些数,学生还可以发现“6”的特点,把“6”反过来当“9”用,这样就会组成更多的数,也是思维创造性的一种表现。
(4)思维具有批判性。思维的批判性是指思维主体通过独立思考,有敢于质疑的能力和较强的辨别力,能够发现自己在思维过程中出现的错误,并自觉纠正错误。教师在教学过程中,应该积极引导学生进行独立思考,并在思考中善于发现自己存在的问题,从而独立解决问题,要引导学生学会从不同的角度思考问题,检验和推理自己得出的结论,探索解决问题的新方法。还要鼓励学生多多质疑,提出问题,提出问题的过程也是思考的过程,有利于学生思维批判性的培养。
(5)思维具有敏捷性。思维的敏捷性是指思维过程具有快速性和减缩性,思维敏捷的学生能够在较短时间内快速思考,产生清晰的思路,对问题作出快速的判断。数学计算对学生的运算能力要求较高,需要学生快速的计算,压缩计算过程,在经过大量的训练后,对于常见的数,学生能够口算出问题的答案,这就需要教师培养学生思维的敏捷性。
三、传授学生逻辑思维的方法
培养学生的逻辑思维能力离不了逻辑思维方法的训练,逻辑思维方法主要包括比较与分类、分析与综合、判断与推理、抽象与概括四种。
1.比较与分类
数学学科的理论性很强,具体的解题方法和思路都是在对数学概念的理解上形成的,而有些数学概念之间存在着密切的联系,表面上看很相似,实则有很大的区别,学习要区分开来才能掌握知识,这就需要对两种或者两种以上的概念进行比较与分类,比如质数与互质数。
2.分析与综合
有些数学知识比较复杂,难以理解,学生需要把复杂的知识进行分解,或者把一个问题中的知识点和难点进行分解,帮助学生更好的理解与掌握,这就是分析。而数学又是一门系统性极强的学科,知识之间有着密切的联系,这就需要学生把所学的知识根据它们的共性或者某些方面的特征结合起来,这就是对知识的综合,在解四则复合应用题时就会用到分析与综合的思维方法。
3.判断与推理
判断是对某一个问题作出肯定或者否定,推理则是从一个判断或几个判断引出新的判断。小学数学需要教给学生比较初级的判断推理方法,让学生在不断运用过程中提高数学素质,比如让学生用正反比例的方法来解决问题。
4.抽象与概括
关键词:Peirce;科学家;逻辑学家;科学;指号学;化学概念
中图分类号:B81-095文献标识码:A
CharlesSandersPeirce(1839-1914),其一生曾作为“一个美国人的悲剧”〔1〕,现在已经越来越多地被认为是他那个时代、也是美国至今产生的最有创造性、最具多才多艺的伟大思想家。他广博的研究涉及非常不同的知识领域:天文学、物理学、度量衡学、测地学、数学、逻辑学、哲学、科学理论和科学史、指号学、语言学、经济计量学和实验心理学等等。而且这里的许多领域,Peirce在不同程度上被视为倡导者、先驱甚至是“鼻祖”。Russell早就做出评价:“毫无疑问,他是十九世纪末叶最有创见的伟人之一,当然是美国前所未有的最伟大的思想家。”〔2〕而当代在世哲学家H.Putnam称他为“所有美国哲学家中高耸的巨人”〔3〕。
虽然Peirce的思想具有极为广阔的视野,但当今学者所公认、Peirce本人也承认的他的两个主要研究领域却是科学和逻辑学。科学和逻辑学是Peirce毕生付出精力最多的两个领域,也是他在大学毕业后决定他一生将做什么时曾犹豫不决的两种选择。但在其学术兴趣上它们是他的孪生子,二者在理论联系上常常是融为一体,成为Peirce最倾心关注的焦点。而且,作为科学家和逻辑学家的经验是Peirce整个哲学系统构建的基础与出发点,是贯穿他一生思想发展变化的重要影响因素。实际上,科学和逻辑学的共同追求正是Peirce为自己所界定的生活目标。把握他的这一显著特征,我们可考察作为科学家的Peirce与作为逻辑学家的Peirce之间的某些联系。
1科学家职业、逻辑学家志向
从实际从事职业来看,Peirce是位科学家,包括化学家、大地测量员、物理学家、天文学家、工程师、发明家、实验心理学家等等;同时这也是他谋生的门路,是他最早获得学术名声的领域。
成为一名科学家,Peirce具有非常优越的条件;同时这也是他的亲戚朋友尤其是父亲所期望的。Peirce出生于具有良好科学氛围的家庭,特别是其父亲BenjaminPeirce是哈佛大学天文学和数学Perkins教授,也是当时美国最有影响的数学家。Peirce从小由其父亲教授数学、物理学和天文学等学科;其聪颖智慧深得父亲欣赏。而Peirce本人也深受父亲影响,尤其是在父亲1880年去世之后,他极想遵照父亲遗愿而继承父亲的事业,从此专注于科学研究。
在Peirce十几岁时,他已经在家中建立了私人化学实验室,并写出了《化学史》;其叔叔去世后,他又继承了他叔叔的化学和医学图书馆。1859年从哈佛大学毕业后,他父亲安排他在美国海岸测量局(后来改名为海岸和地质测量局)野地考察队作为临时助手学习锻炼了一年;而同时他私下跟随哈佛动物学家LouisAgassiz学习分类学方法。1862年进入哈佛的Lawrence科学研究所,并于1863年毕业获得化学理学士。其间于1861年他再次进入海岸测量局,但这次是作为长期助手;1884年10月至1885年2月主管度量衡办公室;1867年父亲成为海岸地质测量局的第三任主管,Peirce于同年7月1日由助手(Aide)提为副手(Assistant),职位仅次于主管;他的这一职位上一直持续到1891年12月31日,时间达24年半之久。从1872年11月开始,他又负责钟摆实验;在1873—1886年间他在欧洲、美国以及其他地方的站点进行钟摆实验。晚年(1896年直到1902年)主要为圣劳伦斯能量公司做顾问化学工程师。
同时,Peirce在1867年被安排在气象台从事观测工作,并于1869年被任命为副手。他曾是一次日环食和两次日全食现象的观测者,还负责使用气象台新获得的天体光度计。1871年其父亲获得国会授权进行横跨大陆的地质测量,Peirce由此又成了职业的大地测量员和度量衡学家。
Peirce生前虽只出版过一本科学方面的书(《光测研究》(1878)),为《theNation》杂志撰写的短评、书评现多收集在由Ketner和Cook编辑出版的《ContributionstotheNation》中;但他在海岸地测局和哈佛气象台的诸多贡献已经为他(也为这两机构)在很年轻时就赢得了国际(特别是在欧洲)声誉(Peirce1870年、1875年、1877年、1880年和1883年先后五次接受测量局任务到欧洲考察,同欧洲的许多科学家建立了联系,并极力主张扩大科学界的国际联系)。Peirce于1867年成为美国文理学院的常驻会员,1877被选为国家科学院的成员,1880年被选为伦敦数学学会成员,1881年被选进入美国科学进步协会。而且值得一提的是,现在Peirce已被认为是采用光波长来测定米制长的先驱。
然而,尽管他原本可以很好地专职于科学职业,并有广阔的前景;并且事实上,他也是由化学进入了各种各样的科学部门,并投入了极大的兴趣和精力,成为美国当时杰出的科学家。但与逻辑学相比,它们只是他生命的第二焦点。
从理想志向来看,Peirce视逻辑学为其天职。早年在父亲指导下学习《纯粹理性批判》时就认为康德的失败主要在于其“平庸的逻辑”,要超越康德体系,必须发展一种崭新的逻辑。他声称在12岁时已经除了逻辑别无其他追求;甚至在生活潦倒、疾病缠身的困境中他依然坚持这一工作。他建有自己的私人逻辑史图书馆,他是近代以来少有的精通古代和中世纪逻辑的一位逻辑学家。他自己说,他是自中世纪以来唯一全身心贡献于逻辑学的人,并声称他是终生的逻辑推理学习者。1906年他在美国《WHO’SWHO》中把自己命名为一名逻辑学家,这在当时是绝无仅有的现象。晚年在Milford的Arisbe,他形容自己为田园逻辑学家、逻辑学隐士。与具有美好前程的科学职业相比,Peirce之所以热中于当时不可能成为谋生手段的逻辑学,更多的是出于对自己既定学术目标的追求:要发展一种有前途的逻辑。他对于逻辑的执著和热情,使得他在逻辑学上的贡献并不亚于科学。
年仅二十几岁时,Peirce就开始在哈佛和Lowell学院作关于逻辑学的演讲;从1879年直到1884年,在保持海岸地质测量局职位的同时,他作为JohnsHopkins大学(美国历史上第一所研究生学院)的兼职逻辑学讲师(这是他一生唯一一次获得的大学职位),并在这期间出版了他第二本书(也是最后一本)《逻辑研究》(1883年,Peirce主编)。这本书在当时的美国乃至整个欧洲都有较大影响。在1901年,他为Baldwin的《哲学心理学辞典》撰写了大部分的逻辑学词条。
虽然Peirce只有短暂的学院生活来传播他的逻辑理论,但在他那个时代,Peirce已经是一位国际性人物。在五次访问欧洲期间,虽然他是作为科学家去考察,但不仅碰到了许多著名科学家,也会见了当时知名的数学家与逻辑学家,包括DeMorgan、McColl、Jevons、Clifford、Spencer等,还与Cantor、Kempe、Jourdain、Victoria夫人等保持着通信关系。1877年英国数学家和哲学家W.K.Clifford评价“CharlesPeirce...是最伟大的在世逻辑学家,是自Aristotle以来已经为这一学科增加实质内容的第二个人,那另一个是GeorgeBoole,《思维规律》的作者。”〔4〕
而在今天,Peirce学者不断发掘出的Peirce的逻辑尤其是现代逻辑贡献更是值得重视。一般认为,他早期主要是作为一名布尔主义者(Boolean)从事代数逻辑方面的研究,而晚年他的贡献主要集中于图表逻辑方面,主要包括存在图表系统和价分析法。1870年Peirce的“描述一种关系逻辑记法,源于对Boole逻辑演算的扩充”是现代逻辑史上最重要的著作之一,因为它第一次试图把Boole逻辑代数扩充到关系逻辑,并在历史上第一次引入(比Frege的Begriffschrift早两年)多元关系逻辑的句法。在1883年之前他已经发展了量化逻辑的完全的句法,与直到1910年才出现的标准的Russell-Whitehed句法仅仅在特殊符号上有点不同。
在对于数理逻辑贡献的广泛性和独创性方面,Peirce几乎是无与伦比。与逻辑主义学派的Frege相比,Peirce的特殊贡献不在定理证明方面上,而更多的是在新颖的逻辑句法系统和基本逻辑概念的精制化发展上。他创造了十多个包括二维句法系统在内的不同逻辑句法系统。把实质条件句算子(在他那里的形式为“—
我们看到,Peirce不仅是有着突出贡献的科学家,同时也是著名的逻辑学家。然而在二者关系上,首要的一点是:他承认自己热爱科学,但坦言对于科学的研究只是为了他的逻辑;因为逻辑的研究需要从各种特殊科学(还有数学)的实际推理方法中概括出一般的逻辑推理方法,而决不是仅仅从逻辑书籍或讲课中背诵、记忆和解题;多样化的科学研究正是为了逻辑之全面概括,由它们获得的材料形成了逻辑学的基础和工具。实际上,这种前后的“从属关系”最突出地表现在他晚年常常是以作为科学家的收入来维持从事逻辑学研究的时间。
2逻辑学作为科学
虽然上文表明逻辑学家Peirce与科学家Peirce之间有近乎目的与手段间的主从关系,但事实上并非如此简单,它们还有更为深刻的一层关系,那就是:逻辑学也是科学。很显然,这是Peirce长期的实验室经历已经使得他以科学的方法处理所有问题(他有时的确称自己为“实验室哲学家”)包括逻辑学了。
我们首先看,科学在Peirce那里意味着什么?Peirce看到大多数人包括科学界之外的人都习惯于把科学视为特殊种类的(主要是指系统化的)知识,而他更愿意像古希腊人那样把科学作为认知的方法,但他强调这种方法一定要是科学探究(inquiry)的方法。知识开始于怀疑,为了寻求确定的信念我们必须要解决(settle)怀疑,一般解决怀疑的方法主要有情感方法(求助于自己的感觉倾向)、信忠团体的方法(选择那些最适合其社会团体的那一信念)和尊重的方法(求助于自己对于某特别个人或机构的尊重之感情)等;但这些方法本质上都是自我中心的非客观的方法,它们往往只通过怀疑者自己的行为、意愿来选择信念,缺乏足够的证据。而真正客观的方法只有科学探究的方法,在这种方法指引之下,探究者从经验出发基于科学共同体(community)的合作去寻求真理(TRUTH)或实在(Reality),这也正是科学活动;最终的真理性认识可能并不是由某一实际的探究者所发现,但只要是遵循这种方法、运用先前的结果,最后都必定会一致达到真理的。这正是Peirce在《通俗科学月刊》上发表的两篇经典性论文《信念的确定》和《如何使我们的观念清楚明白》中所阐述的实用主义(与后来James版本的实用主义有很大不同)方法相一致的,事实上如Peirce所指出的,实用主义不是什么世界观,本质上是一种方法,一种科学探究的方法。而与此同时,我们看到,Peirce把逻辑学视为设计研究方法的艺术,是方法之方法,它告诉我们如何进行才能形成一个实验计划;逻辑就是对于解决怀疑的客观方法的研究,是对于达到真理之方式的研究,其目的就是要帮助我们成为“科学人”。现代科学之优于古代之处也正在于一个好的逻辑,健全的逻辑理论在实践上能缩短我们获知真理的等待时间,使得预定结果加速到来。
但是我们发现,他在思想更为成熟的阶段是把逻辑学的科学属性放置于指号学(Semiotics或更多的是Semieotics)的语境中来考察的,虽然这种处理与以上把逻辑学视为科学方法之研究存在着根本上的一致性。
Peirce不止一次指出,在最广泛的意义上的逻辑学就是指号学或关于指号的理论,仅仅是指号学的另一个名字。〔5〕它包括三个部门:批判逻辑学(CriticalLogic),或狭义上的逻辑学,是指号指称其对象的一般条件的理论,也即我们一般所谓逻辑学;理论语法(SpeculativeGrammar),是指号具有有意义特征的一般条件的学说;理论修辞(SpeculativeRhetoric),又叫方法论(methodeutic),是指号指称其解释项的一般条件的学说。〔6〕这种划分可能受中世纪大学三学科:语法、辩证法(或逻辑学)和修辞的课程设置的影响,指号学在某种程度上可视为对于中世纪后期所理解的逻辑的现代化版本。而我们在此需要强调的是,Peirce把指号学视为经验科学、观察科学。推理就是对于指号的操作,观察在其中发挥着重要作用;指号学同其它经验科学的不同在于它们实验操作对象不一样,在于其它科学的目的仅仅是发现“实际上是什么”而逻辑科学要探明“必定是什么”。但既然是经验科学,根据经验学习的科学人进行逻辑推理所得到的结论就是可错的即准必然的(事实上,任何逻辑必然都只是相对于特定推理前提而产生必然的特定结论)。
更进一步,Peirce把狭义上的逻辑学(logicexact)分成假设逻辑(abductivelogic)、演绎逻辑和归纳逻辑三部分。显然这比传统逻辑上演绎(必然的)、归纳(可能的)二分的做法多出了内容。Peirce得出这样的结论是对于Aristotle三段论基本格研究的结果,他认为Barbara集中表现了演绎推理的本质,而作为特殊的演绎三段论Baroco(把Barbara中结论的否定作前提、小前提的否定作结论)和Bocardo(把Barbara中的结论的否定作前提、大前提的否定作结论),如果把它们的结论考虑为或然性的,则分别相应于假设推理(abductivereasoning)和归纳推理。但更重要的是,Peirce在此显示出了逻辑学与科学的最合理的紧密联系。在他看来,演绎逻辑也即数学的逻辑,而假设逻辑和归纳逻辑主要就是科学的逻辑。在演绎逻辑已经得到普遍承认的情况下,他终生的愿望就是要把归纳和假设(Abduction)同演绎一起坚固地和永久地确立在逻辑概念之中。在科学探究过程中,假设、演绎和归纳先后组成了三个不同阶段的科学方法,它们的共同作用使得科学探究能自我修正。
Peirce把假设放在首位,作为科学探究程序的第一步,目的在于发现和形成假说。假设是为解释违反规律(或习惯)的意外事实而产生假说的过程,它能产生新信息,Peirce把它视为所有科学研究甚至是所有普通人的活动的中心。但这种假设并没有提供安全可靠的结论,假说必须要经过检验。于是,还需要演绎来解释(explicate)和演示(demonstrate)假说即得出预言;再后由归纳回归到经验,旨在通过观察被演绎出的结果是否成立来证实或否证那些假说,即决定假说的可信赖度。在这连续的三种推理形式中,假设是从意外事实(surprisingfacts)推到对事实的可能性解释,演绎是从假说前提推到相应结论,归纳则是从实例到一般化概括。经过这样的科学探究,我们在科学共同体中将能不断接近真理。
3逻辑学中的化学概念移植
为更具体地论述Peirce的科学研究与逻辑学研究之间的紧密联系,我们在此可谈到Peirce对科学中的许多概念向逻辑学研究的成功应用,这突出表现在化学上。因为化学是Peirce的大学专业,也是他进入整个经验科学的入口。
逻辑学作为一门特殊的学科领域,事实上从近代以来,就从数学(包括代数和几何)理论那里找到了非常有力的发展动力和理论技术。我们在此谈到的化学概念应用作为整个自然科学概念推广中的一例其实也是Peirce为发展逻辑学而提出的。
首先,Peirce晚年极为倾心的存在图表逻辑构想正是基于化学图表原理(可能还有拓扑学方法的启发)。存在图表是Peirce在其指号学背景下对Euler图和Venn图的重大发展,具有极强的表现力。其在自然、直观、易操作上要远胜于代数方法(包括标准的Peano-Russell记法),因为我们心灵的思想过程被同构地展现在推理者面前,对于图表的操作代替了在化学(和物理)实验中对于实物的操作。化学家把这样的实验描述为向自然(Nature)的质疑,而现在逻辑学家对于图表的实验就是向所关涉逻辑关系之本性(Nature)的置疑。〔7〕
第二个例子,现代逻辑(可能从《数学原理》开始)中的一对基本概念:命题和命题函项(或有时称为闭语句和开语句)原本就是来自化学中的“饱和”(Saturation或Gesättigkeit)和“未饱和”概念。Peirce用黑点或短线来代替语句中的“指示代词”(即逻辑中的自变元),得到形如“——大于——”、“A大于——”这样的形式,它们分别被称为关系述位(relativerhema)(区别于像系词一样的关系词项)和非关系述位,也即他那里的谓词(谓词是几元的取决于我们到底如何选择去分析命题)。他指出,述位不是命题,并坦言“述位在某种程度上与带有未饱和键(unsaturatedbonds)的化学原子或化学基极为相似。”〔8〕然而不无意外,我们发现同时期欧洲大陆的Frege也正在独立地从化学概念得到逻辑研究的灵感。他把诸如“……的父亲”的函项记号称为“未饱和的”或“不完全的”表达式,以与专有名词相区别。〔9〕
另外一个例子是Peirce提出的价分析(ValencyAnalysis)法。正如名字所显示出的,它同化学中的化合价概念密切相关,Peirce所使用的词语Valency直接源于化学中的术语Valence即化合价。价分析是Peirce在图表化逻辑思想指引下于存在图表(ExistentialGraphs)之外创设的另一种二维表现法。其中,显然他是把思想中概念的组合与“化学离子”的组合相比拟,如他采用类似“——”这样的结构表示带有“开放端(looseend)”(即黑点后面的横线)的实体,即谓词;这就是化学中离子结构的简单变形。由于它们的开放端导致的“不稳定”(正像离子本身不稳定一样),开放端之间就可能连接起来形成共同“键”(bond)。如“——”同“——”可形成“——”样式的新结构〔10〕。正是利用这样的离子组键技术,Peirce成功证明了其著名的化归论题,即对于三元以上关系都可化归到三元和三元以下的关系,但一元、二元和三元关系却不能化归。这一论题是他哲学思想体系中所坚持的三分法原则的逻辑证明。
综观Peirce的科学家经历和逻辑学家志向,Peirce把逻辑学视为对于各种科学推理方法的概括,同时又把逻辑学理论指导、应用于科学研究过程。二者紧密相连,互为作用。而更为突出的,他的逻辑贡献大都可追溯到其多样化的科学研究,他的逻辑独创往往也是其科学研究经验的启发性建议。笔者以为,研究Peirce的这些方面,我们至少可得出以下启示:逻辑学应从数学和科学推理实践中概括推理的一般本质;逻辑学家应尽可能学习、掌握科学(传统逻辑就因为没有这样做而失败,科学家非逻辑学家或逻辑学家非科学家都不能胜任于对科学推理的分析工作),因为拓宽自己的科学研究领域必将能加强逻辑学家对于逻辑科学的贡献能力;同时科学家要想更为一般地把握住推理方法也应了解逻辑学,但是前者在当前学术界值得特别注意。当前处于被冷落地位的逻辑学要想摆脱这种局面,必须加快发展自己;而经验科学(不再仅仅是数学)必能使得逻辑学发展获得新的生命力,这已经是被现代逻辑的发展史(特别是初创时期)所证实的。
参考文献
〔1〕库克.现代数学史〔M〕.呼和浩特:内蒙古人民出版社,1982年.61.
〔2〕罗素.西方的智慧〔M〕.北京:商务印书馆,1999年.276.
〔3〕HilaryPutnam.PeircetheLogician〔J〕.HistoriaMathematica,9(1982).292.
〔4〕MaxFisch.TheDecisiveYearandItsEarlyConsequences〔M〕.WritingsofCharlesS.Peirce:aChronologicalEdition(Vol.2).Bloomington,Indiana.IndianaUniversityPress.1984.Introduction.
〔5〕〔6〕〔7〕〔8〕CharlesSandersPeirce.CollectedPapersofC.S.Peirce(Vol.1-8)〔C〕.Cambridge,Massachusetts.HarvardUniversityPress.1931-58.2.227,2.93,4.530,3.421.(按照Peirce文献的通常标注法,这里如“2.227”的记法,小圆点前面的数字为卷数,后面的数字为节数)
〔9〕威廉·涅尔,玛莎·涅尔.逻辑学的发展〔M〕.北京:商务印书馆,1985年.624.
〔10〕RobertBurch.ValentalAspectsofPeirceanAlgebraicLogic〔J〕,ComputersMath.Applic,Vol.23,No.6-9,1992.665-677.
Peirce:TheScientistandLogician
一、导论
人们通常认为,逻辑是研究推理和论证的规范性的科学。这样的推理和论证是纯形式的,与内容无关的;并且逻辑研究的是纯客观的。逻辑学所得出的逻辑学定律是适合“所有人”的,这里的人是指具有推理能力的理性人。
然而,社会事实是,并非独立地存在许多“个人”,所谓的各个“个人”是相互联系的。这里的联系有多方面的,如生理的、物质的、经济的等等。我们这里关心则是“心灵的”。即:一群人组成的群体被称为一个社会,我们的逻辑是适合该群体中的所有“个人”。存在群体进行推理和论证的逻辑吗?
有人会认为,这样的问题本身是可质疑的。因为,社会虽然是由许多“个体”组成的一个总体,但它毕竟不是如单个人那样的一个“总体”。即社会“总体”本身不是一个自主的像个体那样的单位。这样,没有认知主体,哪来的推理和论证?
认为不存在这样的群体主体的理由是,任何一个群体它本身不说话,它不可能像我们每个人那样思维、表达、论证,甚至争论,除非由一个人说了算的独裁社会,该独裁者“代表”群体的每个人。但一个独裁的社会已经退化到一个人。
的确,确实不存在像单个人的“社会总体”,但这不构成“社会”不能进行推理的理由。对上述反对理由的一个类比反驳是,不存在社会心灵,但同样存在研究群体意识和无意识行为的“群体心理学”。因此,群体推理和论证的逻辑学同样可以存在。
多个人组成的群体或组织的决策与行动方式不同于单个人,它有独特的“规则”。我们不能要求一个群体像一个人那样,否则它就“是”一个人。至于社会的不同于个体的思维、决策过程,正是我们研究的。如,一个群体中“所有人”“知道”“金属导电”,“所有人”“知道”“铁是金属”,那么“所有人”“知道”“铁能够导电”。尽管我们可以用谓词表达式刻画这个推理,但我们将所有人看作一个单位,它便是指某个像个人的单位。再比如,在给定规则下,一个群体要在a、b两个候选对象间表达群体的偏好时,它当然不能或不应该能够得出,“a比b优”并且“b比a优”!再比如,一个群体它不能或不应当做出“从事a”并且“不从事a”行动这两个相互矛盾的决策。前者是关于命题的推理,或者是关于决策或行动的群体推理。
自弗雷格将逻辑学与心理学的研究对象严格区分开来之后,现代逻辑获得了突飞猛进的发展。但逻辑研究的推理和论证是人的许多心理现象中的一种,既然心理学中群体心理学获得巨大的发展,是否存在研究群体推理和论证的逻辑学?
二、从个体认知逻辑到群体认知逻辑
认知逻辑(epistemiclogic)是现代逻辑中的一个分支。认知逻辑刻画认知主体对命题的认知态度(如知道、相信、怀疑等)中的客观过程。如知识逻辑刻画理性的人“知道”的逻辑结构。
逻辑学家发现,刻画群体的认知状态需要新的关于群体的认知逻辑。
博弈论研究有各自目标的两个或两个以上的理性人如何在互动中进行决策。起初,博弈论专家假定博弈中的参与人是理性的——具有使自己效用最大化的推理能力,然而,奥曼(2005年诺贝尔经济学奖得主)等人发现,这样的假定是不够的,我们必须假定,“一个博弈中的每个参与人都是理性的”是该博弈所有参与人组成的“群体”所知道的,即每个人都是理性的是群体中的“公共知识(commonknowl-edge)”(或翻译成共同知识)。
什么是公共知识呢?公共知识是相对于某个群体的,某个真命题p是群体g的公共知识,指的是,“该群体”“知道”该真命题p,即ckp。群体知道与群体中的各个成员知道之间的关系如何呢?某个真命题p是群体g的公共知识指的是,群体中的每个成员都知道真命题p(kip),群体中的每个成员知道他人知道p(kjkip),群体中的每个成员知道他人t他人知道p(kkkjkip)……由此可见,某个命题p是群体的公共知识即群体“知道”p,与p是群体中的每个人的知识即每个人都知道p,是完全不同的两种知识分布状态。
举一个例子。我们假定,对“所有”受过小学以上教育的人来说,他们中的每一个均知道,“4能够被2整除”,即我们假定“4能够被2整除”是所有受过小学以上教育的人的知识;并且我们假定,这也是任何群体的公共知识:如果某个人受过小学以上的教育,他应当知道“4能够被2整除”。对于一个由有限个受过小学以上教育的人所组成的群体而言,“4能够被2整除”尽管是他们的每个人的知识,但不是该群体的公共知识。原因在于,他们均受过小学以上的教育不是该群体的公共知识。很有可能的是,其中有人不知道其他某个人受过小学以上的教育,或者,某人不知道对方知道他受过小学以上的教育……。
所谓公共知识逻辑就是某个群体中的所有人“共同知道”的逻辑。公共知识逻辑其实刻画的就是群体作为一个总体的推理系统,公共知识逻辑有下面这些特征公理:
c1:ck(g,p)p(若p是群体g的公共知识,p是真的);
c2:ck(g,p)∧ck(g,q)ck(g,p∧q)(若p和q是公共知识,p且q也是公共知识);
c3:ck(g,pq)∧ck(g,p)ck(g,q)(若p蕴涵q是公共知识,并且p是公共知识,那么q也是公共知识);
c4:~ck(g,~p∧p)(矛盾式不是公共知识);
c5:ck(g,p)ck(g,ck(g,p))(若p是公共知识,“p是公共知识”也是公共知识)。
c6:~ck(g,p)ck(g,~ck(g,p))(若p不是公共知识,“p不是公共知识”是公共知识)。
对公共知识逻辑的研究是多主体(multi—a-gent)认知逻辑学研究的内容,但它同时是多个学科如计算机、人工智能、博弈论、社会科学关心并研究的内容。
认知逻辑中的公共信念逻辑(commonbelieflog-ic)同样研究群体的推理和论证,在研究群体信念的逻辑中,没有如c1这样的公理,因为信念不必为真。
三、研究群体推理的科学逻辑
科学是理性的活动,但同时是集体性的活动。科学哲学家努力研究科学家的群体推理规则。
那么是否存在适合“所有”科学家的推理规则吗?传统哲学家认为存在这样的东西,这便是“科学方法”,方法论专家的任务即是找到这个方法。这个科学方法包括发现的方法——根据这个方法科学家能够发现真的科学理论和辩护的方法——根据这个方法,某个理论能够得到“证明”。然而,上世纪20年代兴起的逻辑经验主义认为要严格区分发现的范围和辩护的范围。他们认为,不存在发现的方法,但存在辩护的方法。逻辑经验主义试图给出对理论或假说进行归纳辩护的方法。
逻辑实证主义努力给出的归纳证实的方法论标准,以及波普(k.popper)的演绎证伪的方法论标准,是超科学、超历史的,所有科学家都应当遵守的。
科学哲学中历史主义代表人物库恩则认为不存在这样的方法论标准,任何标准都内在于“范式”,范式是一科学家共同体区别于其他科学共同体的“群体推理规则”。库恩认为,范式是科学活动的基本单位。——所谓范式是科学家共同体共同拥有的东西。在库恩看来,不同的科学家共同体拥有不同的范式。科学的发展表现为范式的变迁。
在库恩那里,科学活动在常规科学时期,科学活动是理性的——理性表现为科学家群体进行理论选择有公认的标准,此时科学家群体对什么样的理论是好的理论、什么是“疑难”等有确定的标准;而科学革命时期,由于没有赤裸裸的观察,任何“观察负载着理论”,科学活动没有理性可言——因不同的科学家共同体有不同的理论评价标准,而不存在中立的、客观的评价不同科学家共同体范式的标准。那么在科学革命时期,理论选择是如何进行的呢?根据库恩的观点,此时的理论选择完全是根据科学家的偏好进行的,而偏好是由范式决定的。
库恩努力告诉我们的是,科学家共同体所拥有的范式本身是一套“群体的推理规则”,信仰同一个范式的科学家群体用这样的推理规则进行群体推理;而不同的科学家共同体因推理规则不同(范式不同)而得出不同的结论。
因此,科学哲学家所力图揭示的是科学家进行群体推理的规则,不同的是,“逻辑主义者”哲学家认为,存在不变的规则;而“历史主义者”则认为这样的标准随群体的不同、历史的发展而变化。四、公共选择理论:研究群体选择的逻辑我们每个人在行动选择时;根据自己的偏好在多个行动中选择有利的行动。这是一个推理过程。然而,一个包含两个或以上的行动者的群体或社会是如何做出共同行动或集体行动决策呢?即:群体是如何进行行动选择的推理的呢?
每个人有自己的偏好,群体行动的选择依赖于群体个人的偏好进行“加总”(collect),以形成群体的偏好。对群体中各个人的偏好进行加总是通过投票来完成的。对群体如何加总个人的偏好的研究是公共选择理论的重要研究内容。
群体的投票规则即是群体的偏好形成的推理规则。如,一个群体对某个提案进行表决时,大多数规则——这是一个简单的易于理解的规则——说的是,一个“议案”若获得投票总人数中的一半以上则获得通过,即在此情况下,“该群体”“认为”该议案获得了通过;或者说该群体“认为”该议案通过比不通过要好。若一个“议案”没有获得投票总人数中的一半,在此情况下,“该群体”“认为”该议案不通过比通过要好。
一个议案或者通过或者不通过,此时,投票群体进行投票便是在二中择一。当一个群体面临的候选对象超过两个(即三个或三个以上)时,情况便复杂起来。人们发明了许多加总投票人偏好的方法。如孔多塞的两两相决的规则,逐步淘汰的黑尔体系(haresystem)和库姆斯体系(combssystem),一次性决策的赞成性多数(approvalvoting)和博达记分法(bodacount)。
逻辑主要是研究推理和论证的。若研究的是推理,在推理中存在前提和结论:前提是已知的,而结论要根据有效推理得出的。在群体投票中,我们根据投票者对某个议案的偏好——这构成推理前提,和投票规则——这构成推理规则,而得出投票结果——它便是结论。这样看来,群体加总群体中个人偏好的特定投票规则便是逻辑学中所说的系统,我们称这种系统为群体偏好推理系统。
在实际中存在不同的投票规则,因而存在不同的群体偏好系统。我们考察逻辑系统时,往往考察系统的完全性和可靠性。群体偏好推理系统的完全性和可靠性如何呢?
对于个体,他所用的偏好关系的推理系统满足完全性和可靠性,或者我们假定它满足完全性和可靠性。研究社会选择的经济学家首先研究理性的偏好关系。偏好关系以“≥(弱优于)”表示。某个理性人认为“a≥b”,表示的是,对于该理性人而言,备选对象a与b相比,a至少与b一样好。经济学家认为“理性的”的偏好关系应当满足完备性和传递性条件:(1)完备性:任何两个备选对象a,b,它们的关系是或者a≥b,或者b≥a,二者必居其一;(2)传递性:对于任意的三个备选对象,如果a≥b,b≥c,那么a≥c。
满足这两个假定的偏好关系的推理系统,如果用逻辑学的术语来说,该推理系统具有完全性——任何两个备选对象都具有一个偏好关系;上面的完备性正是说明了这点;该系统同时具有可靠性——不会产生矛盾的偏好关系;由传递性作保证。一个群体进行推理时,该群体能够做到完全性和可靠性吗?这是下一部分要回答的。
五、群体理性如何得到保证?
群体推理的理性如何保证?
科学哲学家库恩认为,同一个范式下的活动是理性的,因为存在一套为科学共同体中所有人都接受的不相互矛盾的规则体系。此时,科学共同体的理性是能够得到保证的。但在科学革命时期,由于不存在共同接受可以对不同的范式下的规则进行评价的元规则,科学理论之间的竞争是非理性的。这样,不同的科学家群体组成的更大群体的理性得不到保证。
在群体选择中理性是不是也得不到保证呢?
群体的偏好关系推理系统具有完全性和可靠性吗?这个问题涉及到两个方面:第一,群体用于偏好推理的系统能否适合一切可能的偏好组合,这是可靠性问题;第二,该系统进行推理时能否保证不出现矛盾,这是完全性问题。偏好关系推理系统的特性是许多学者所关心的重大问题。
一个极端情况是,加总的规则为独裁规则,即某个人的偏好即群体的偏好,那么将不出现所谓矛盾性的结论。
阿罗证明了,一个群体中的每个人给定偏好顺序的情况下,不可能存在满足下列4个条件并具有传递关系的社会福利函数:第一,定义域不受限制——社会福利函数适合所有可能的个人偏好类型;第二,非独裁——社会偏好不以一个人或少数人的偏好来决定;第三,帕累托原则——如果所有个人都偏好a甚于b,则社会偏好a甚于b;第四,无关备选对象的独立性——如果社会偏好a甚于b,无论个人对其他的偏好发生怎样的变化,只要a与b的偏好关系不变,社会偏好a甚于b不变。
这被称为阿罗不可能性定理。这个定理说明了什么?
这说明了,群体作为总体不可能像个人那样,在任何情况下都能够作出“理性的”排序。孔多塞投票悖论反映的正是这个情况:群体得出了矛盾的结果。
群体投票是群体推理过程,投票规则是群体推理系统。以这样的视角看,阿罗不可能性定理告诉我们,对于有三个以上的备选方案的情况下,群体推理系统不可能既是完备的——适合所有的人的偏好类型,又是可靠的——不出现矛盾性的结论。
从20世纪50年代开始,哲学逻辑和逻辑哲学的研究在国际哲学界、逻辑学界蓬勃兴起,国内逻辑学界也于上世纪80年代开始,介绍、引进国外哲学逻辑和逻辑哲学的研究成果,目前对哲学逻辑与逻辑哲学的研究,从总体上讲,国内仍处于消化、吸收并尝试进行创造性研究阶段。哲学逻辑和逻辑哲学这是两门密切相关的学科,二者都是现代哲学与现代逻辑相互渗透的产物,但它们是两门不同的学科,有着不同的研究对象与范围。然而,由于“哲学逻辑”至今是一个充满歧义的词,不同的学者对它有不同的理解,并在很不相同的意义上使用它,冠以“哲学逻辑”之名的书籍五花八门,因而,和逻辑哲学在词义上发生了混乱。为了进一步推动哲学逻辑与逻辑哲学的研究,促进这两门新兴学科的确立与完善,因此,有必要对哲学逻辑的精确涵义及与逻辑哲学的关系作一番梳理与辨析。
一哲学逻辑词义的历史演变
最早[论\文\网lunwennet\com]明确使用“哲学逻辑”一词的是英国著名数学家、哲学家、逻辑学家罗素。他在《我们关于外在世界的知识》一书(1929)中,指出:“数理逻辑,除了它的初创形式之外,就连最现代的形式也不直接具有哲学上的重要意义。在初创以后,它就属于数学而不属于哲学了。我将要扼要论述的,是数理逻辑的初创形式,只有这个部分才真正称得上哲学逻辑。往后的发展,尽管没有直接的哲学意义,但是对哲学研究有很大的间接用处。”①他还认为,哲学逻辑的真正对象乃是为各种命题和推理所共有的逻辑形式,哲学逻辑乃是对逻辑形式的研究。以往的哲学由于被语言表面的语法形式所蒙骗,未能认清其隐藏着的真正的逻辑形式,而犯了许多重大的哲学错误。
可见,罗素对“哲学逻辑”一词的词义只给予了初步界定,而未加阐释。后来的英国著名学者斯特劳森赋予了“哲学逻辑”以明确的含义。1967年,斯特劳森编辑出版了一本题为《哲学逻辑》的文集,该文集收入了弗雷格、格拉斯等学者的相关论文,他为此书撰写了一长篇序言,在序言中,斯特劳森阐述了他对哲学逻辑的观点。他把整个逻辑领域区分为两部分:“逻辑是关于命题的一般理论。它有形式的部分和哲学的部分。”分别叫形式逻辑和哲学逻辑。在他看来,形式逻辑研究命题之间的可演绎关系或蕴涵关系,它要以系统的方式排列有关这种蕴涵关系的各种规律;而哲学逻辑则要研究形式逻辑产生的哲学背景和哲学预设,以及由此引出的一系列哲学问题,例如:究竟什么是命题?说一个命题为真是什么意思?命题联结词的准确性质,特别是出现在条件命题中的蕴涵的准确性质是什么?意义概念应当怎样加以分析?真理概念和分析性概念应当怎样加以分析?指称和述谓((predica2tion)的区别与联系是什么?哲学逻辑学家要回答这些问题,就必须回答有关语言和各种语言表达式的性质与功能等问题。因此,需要进一步研究这样一些问题:实际的言语活动模式;意义理论;语言交际的特性与条件,等等。②
很明显,在斯特劳森那里,“哲学逻辑”其实质不是逻辑,而是某种形式的哲学,是对与逻辑有关的哲学概念和哲学问题的仔细探究,它的成果和方法有直接或,间接的哲学意义。在斯特劳森观点的影响下,英国哲学家大都在哲学意义上使用了“哲学逻辑”一词。例如,格雷林在《哲学逻辑引论》一书中指出:“哲学逻辑是哲学,尽管它是提供逻辑学知识,对逻辑问题很敏感的哲学,但它是哲学。”他甚至认为,在“哲学逻辑”这一名词中,“逻辑”这一字眼的作用会引人误解,因为,哲学逻辑并不是关于逻辑的,也不是逻辑学。正是基于这些看法,格雷林的《哲学逻辑引论》所研究的主要是:命题;必然性、分析性与先验性、存在、预设与摹状词、实在论与反实在论,③等等。与格雷林同为英国牛津大学讲师的沃尔夫拉姆在1989年出版的《哲学逻辑导论》一书中,沃尔夫拉姆也阐述了他对哲学逻辑的看法。在他看来,哲学逻辑是关于论证、意义与真理的研究,它的主题与形式逻辑相关,但其研究对象不同,它不像形式逻辑那样处理有效论证,它只检验已经建构好的逻辑系统中的基本概念。根据这种观点,沃尔夫拉姆在书中主要研究了指称与真值、必然真、分析与综合、存在与同一、意义问题,等等。④在由联合国教科文组织筹划,法国哲学家保罗·利科主编的《哲学主要趋向》(1979)一书中,所沿用的都是这种意义上的哲学逻辑概念。
然而,数理逻辑诞生以来,数理逻辑成果被广泛运用,大批应用逻辑分支如同雨后春笋般地涌现出来,很多哲学家与逻辑学家关注了这一情况,赋予了哲学逻辑以逻辑的含义。众所周知,在逻辑发展史上,莱布尼茨最早提出了创立数理逻辑的理想,他为此付出了艰苦的努力,却未能获得成功。
1930年哥德尔证明了谓词演算的完全性,数理逻辑才算真正创立。但是,有一部分逻辑学家不满意已有的数理逻辑系统,认为它们存在严重的“缺陷”和“不足”,于是着手“修改”或“扩充”已有的一阶逻辑。他们或者创立了一些修正以至替代它们的新逻辑分支,例如直觉主义逻辑,相干和衍推的逻辑,多值逻辑,自由逻辑等等,或者应用已有的一阶逻辑工具于哲学、语言学等专门领域,创立了带有浓厚应用色彩的多种逻辑分支,例如,模态逻辑、时态逻辑、道义逻辑、认知逻辑等等。
这些新的逻辑系统或分支在20世纪20—30年代开始出现,在50—70年代繁荣兴旺起来,以至最后形成了一个新兴的逻辑学科群体。⑤因此,相当的学者越来越倾向于用“哲学逻辑”一词专指这个新兴的学科群体。例如,美国逻辑学家莱斯彻在1968年出版的《哲学逻辑论集》中阐述了他对哲学逻辑的看法。他指出,现代逻辑的发展有两个方向:一是数学方向,即数理逻辑,它是现代逻辑发展的主流;另一个方向则是哲学逻辑,它是对一些相关的哲学领域,比如本体论、认识论领域、伦理道德与规范概念等的逻辑研究,这些研究的共同特点是它们与数学并无直接联系,而往往具有较为明显的哲学背景与哲学意义,故称为哲学逻辑。⑥在他看来,模态逻辑、时态逻辑、道义逻辑、认知逻辑等等,就是哲学逻辑研究的主要内容。他所构造的哲学逻辑就是由这些研究内容所组成的学科群体。
关于哲学逻辑的词义,也有许多学者是在哲学与逻辑的双重意义上来使用。例如,柯比和古尔德合编的《当代哲学逻辑》以及冯.赖特的论文集《哲学逻辑》都属于这一类型。在他们看来,哲学逻辑既指对逻辑所产生或引起的哲学概念和问题的哲学研究,也指这种研究所建立起来的新的逻辑。前者是非形式的,后者则是用形式化方法构造的形式系统。恩格尔则把前者叫做“非形式的哲学逻辑”,后者叫做“形式的哲学逻辑”。
二哲学逻辑对象的界定
根据上述对哲学逻辑词义的历史考察,关于哲学逻辑的词义,国外学者是在三种不同的意义上使用的:一是哲学逻辑是哲学,是一门与逻辑有关的哲学学科,它研究由逻辑所引起或,提出的哲学问题;一是哲学逻辑是逻辑,它是与哲学有关的逻辑学科,研究具有较为明显的哲学背景与哲学意义的概念的逻辑问题;一是哲学逻辑既是哲学,又是逻辑。
仔细考究这些关于哲学逻辑词义的不同看法,可知其原因是未能把哲学逻辑与逻辑哲学这两个不同的概念区分开来所致。我们知道,20世纪现代逻辑与现代哲学发展的一个重要特征是两者的相互渗透,由此出现了“哲学的逻辑化”与“逻辑的哲学化”两大趋势,并进而形成了“哲学逻辑”与“逻辑哲学”等新兴的交叉学科。⑦哲学的逻辑化趋势主要表现在现代西方分析哲学和语言哲学的兴起,芬兰最著名的哲学家、逻辑学家冯·赖特在其名著《20世纪的逻辑和哲学》中指出:“20世纪哲学最突出的特征是逻辑的复兴,它是哲学发展的发酵剂。这一复兴是从本世纪开始的。最初以剑桥和维也纳为中心,后来扩大到整个分析哲学运动,这一复兴与之交汇,这是逻辑学登上哲学舞台的标志。”20世纪以来,哲学的主要问题和研究对象既不是本体论,也不是认识论,而是语言问题,哲学研究的一般方法就是语言分析,而语言分析的基本工具就是现代逻辑,因此,在国际哲学界形成了哲学的逻辑化趋势,在这种趋势下,对一些哲学概念进行精细的逻辑分析成为一些学者关注的热点,哲学逻辑也就应运而生。逻辑的哲学化趋势是在现代逻辑的基础上,在对逻辑的哲学反思中形成的,主要表现为对逻辑本身的整体性的哲学思考或研究以及对逻辑特别是现代逻辑发展中的一些具体问题的哲学分析。由于现代逻辑本身是一个不断发展的学科群体,也由于现代逻辑发展中的哲学问题并不是一成不变的,还由于不同的研究者可以有不同的研究视野,因此,逻辑的哲学化趋势是多元的。当哲学逻辑与逻辑哲学刚登上学术舞台的时候,我国年轻学者陈波就密切关注其研究动态,在国内介绍并引进国外学者在哲学逻辑与逻辑哲学研究上的成果,并在一系列相关论著中,明确主张严格区分哲学逻辑和逻辑哲学。
在我看来,哲学逻辑是逻辑,是20世纪20-30年代开始兴起,50~70年代蓬勃发展的一个新兴逻辑学科群体,它们以数理逻辑(主要指一阶逻辑)为直接基础,以传统的哲学概念、范畴以及逻辑在各门具体科学中的应用为研究对象,构造出各种具有直接哲学意义的逻辑系统。逻辑哲学则是哲学,它在逻辑和哲学中都具有自己的起源,因而包括两部分内容:首先,逻辑哲学要研究逻辑学本身所提出的一系列哲学问题,例如逻辑究竟是什么,蕴涵与推理有效性的关系,逻辑真理和逻辑悖论等等;其次,逻辑哲学还要研究如何在哲学研究中引入现代逻辑的工具,利用它去解决传统的哲学争论和哲学难题,例如意义问题、真理问题、存在问题等等。
三哲学逻辑的研究范围
辨析哲学逻辑与逻辑哲学的词义,可知两者有着不同的研究对象,这种不同的研究对象,决定它们有着不同的研究范围。以数理逻辑为直接基础,以传统的哲学概念、范畴以及逻辑在各门具体科学中的应用为研究对象的哲学逻辑,其研究范围包括两大子群,一是异常逻辑(deviantlogic),形式上表现为经典逻辑的择代系统(alternativesystems);一是应用逻辑(appliedlogic),形式上表现为经典逻辑的扩充系统(extendedsystems)。
异常逻辑亦称非经典逻辑(non-classiclogics),它们是相对于经典逻辑而言的。经典逻辑包括命题演算、谓词演算和关系演算,是建立在下述基本原则或假定之上的:(1)外延原则,即它在处理语词、语句时,只考虑它们的外延,并认为语词的外延是它所指称的对象,语句的外延是它所具有的真值;如果在一复合语句中,用具有同样指称的但有不同涵义的语词或语句去替换另一语句或子语句时,该复合语句的真值保持不变。这就是著名的“外延论题”⑧。与此相联系,一阶逻辑是建立在实质蕴涵之上的真值函项的逻辑。(2)二值原则,即在一阶逻辑中,任一命题或真或假,非真即假,没有任何命题不具有真假值。(3)个体域非空,即量词毫无例外地具有存在涵义,并且单称词项总是指称个体域中的某个个体,不允许出现不指称任何实存个体的空词项。4.采用实无穷抽象法,因而在其中可以研究本质上是非构造的对象。凡是因否弃其中某一个原则或假定而建立起来的逻辑理论,都属于异常逻辑。具体来说,这包括多值逻辑、相干和衍推的逻辑、直觉主义逻辑、偏逻辑、自由逻辑、量子逻辑等等。
多值逻辑就是由否弃真假二值原则而建立的逻辑理论,它可以形式定义如下:一个系统是n值的,仅当n是系统的特征模型值的最小数,当然这里的n必定大于2。随着n取大于2的不同值,多值逻辑就有不同的形态。例如,当n=3时,就得到最简单的多值逻辑:三值逻辑。在卢卡西维茨所构造的三值逻辑中,被经典逻辑奉为金科玉律的不矛盾律和排中律不再是普遍有效的规律。三值逻辑还可扩展成有穷多值甚至无穷多值逻辑。将多值逻辑应用于物理学领域,导致了量子逻辑的创立,后者被用来刻画微观粒子的波粒二象性和测不准特性。⑨
相干[论文网]和衍推的逻辑、直觉主义逻辑都是由否弃实质蕴涵而建立的逻辑理论。在相干逻辑中,用相干蕴涵代替实质蕴涵。a相干蕴涵b,即是说,a与b之间有某种共同的意义内容,使得由a逻辑地推出b,并且这种推出与a,b的真值毫无关系。a与b之间内容上的相干还有其形式表现,即a和b至少有一个共同的命题变元,这就是著名的相干原理。a衍推出b,既要求a与b相干,又要求a与b有逻辑的必然联系,所以衍推逻辑是相干逻辑,又是模态逻辑。在直觉主义蕴涵中,则用直觉蕴涵代替实质蕴涵,a直觉蕴涵b,是指存在某些构造(例如p),把它与a相连接之后能产生b。这就是说,“如果a则b”要求a与b有一定的关系,亦即要求有一个过程,当把这个过程与证明a的过程配合起来之后,可以证明b真。在相干逻辑和直觉主义逻辑中,许多经典逻辑的定理不再成立。
应用逻辑则是利用经典逻辑的工具,去分析某些具体学科特别是哲学中的概念或范畴而建立的逻辑分支。所以冯·赖特说:“哲学逻辑有时定义为运用逻辑分析传统上哲学家所关心的概念的结构。”“我把哲学逻辑描述为构造形式系统以精确阐释我们在某些话语领域内的概念直觉。我认为,本世纪20多年来的发展表明:构造此类系统实际上可以在哲学家传统上感兴趣的任何领域内进行。这些系统可以称为相关领域内的‘逻辑’,例如,时间的逻辑,因果的逻辑,行动的逻辑,规范的逻辑,或者偏好(优先)的逻辑。”
应用逻辑又可以分为三组:本体论的逻辑,认识论的逻辑和伦理规范的逻辑。
本体论的逻辑是以传统哲学本体论的概念、范畴以及相关问题为研究对象的逻辑理论。具体来说,它包括模态逻辑、时态逻辑、存在逻辑、部分和整体的逻辑、莱斯涅夫斯基的本体论、构造主义的逻辑、唯名论唯实论意义上的本体论等等。模态逻辑是关于必然性和可能性的逻辑,或者说,是研究含有“必然性”、“可能性”的命题的逻辑特性及其推理关系的逻辑分支。它分为正规的和非正规的两种类型。一个正规模态命题逻辑系统是经典命题逻辑的重言式集的一个扩集,扩集满足两个条件:
(1)口(pq)(口p口q)在s中有效;
(2)在s中,从有效公式出发,经使用分离规则,代入规则,必然化规则,所得到的仍为有效公式。这里提到的必然化规则是:
若┝a,则┝口a。时态命题是研究时态命题的逻辑特性及其推理关系的逻辑分支,它试图把涉及时间因素的命题之间的推理关系系统化,为涉及时间因素的精确讨论和严格推理提供工具。从形式上看,时态命题逻辑系统t是不同于正规模态命题逻辑的,是经典命题逻辑重言式集的另一种扩集,它满足下述两个条件:
(1)g(pq)(gpgq)和pgpp在t中有效;
(2)在t中,从有效公式出发,经使用分离规则,代入规则和时间性概括规则,所得到的仍为有效公式。
存在逻辑是关于存在及其同类概念的逻辑理论,它研究这些概念的性质,探讨诸如“存在是不是谓词”等问题,这种逻辑归根结底不仅依赖于纯逻辑的思考,而且依赖于本体论的思考。
认识论的逻辑是以传统认识论所研究的概念、范畴为对象的逻辑理论,它们与知识的获得、接受、传递以及对于某一知识的态度例如怀疑、断定、相信等等有关。具体来说,它包括问题逻辑、知道逻辑、相信逻辑、条件句逻辑、内涵逻辑、归纳逻辑(证据、确证、接受的逻辑)等。⑩
伦理规范逻辑:伦理学属于广义哲学的一部分,传统哲学特别是伦理学要研究诸如权力和义务、应该、允许、禁止、需要和要求、决定和选择、动机、效果与行动等概念和范畴。伦理规范的逻辑就是与这一类哲学概念和范畴相关的逻辑理论。
具体来说,它包括道义逻辑、命令句逻辑、行动逻辑、优先逻辑等等。
注:
①罗素:《我们关于外在世界的知识》,东方出版社1992年版,第36页。
②p.f.strawson:philosophicallogic,oxforduniversitypress,1967年版,第1页。
③格雷林:《哲学逻辑引论》,中国社会科学出版社1990年版,第17页。
④s,wolfram:philosophicallogic:anintroduction,routledgelondonandnewyork,1989年版,第8页。
⑤陈波:《逻辑哲学》,北京大学出版社2005年版,第10页。
⑥n.rescher:topicsinphilosophicallogic,d.reidelpublishingcompany,1981年版,第21页。
⑦胡泽洪:《逻辑的哲学反思》,中央编译出版社2004年版,第34页。
⑧王路:《逻辑与哲学》,人民出版社2007年版,第46页。
数学教学思维能力
数学离不开思维,可以说数学的所有结论都是思维的结果。进行思维训练,培养学生的思维能力,是小学数学教学的主要任务之一,是实施素质教育开发学生智能,提高学生素质的重要措施。那么,如何在小学数学教学中培养学生的逻辑思维能力呢?
一、培养小学生数学逻辑思维能力的必要性
《九年义务教育全日制小学数学教学大纲(试用)》中明确提出,“结合有关内容的教学,培养学生进行初步的分析、综合、比较、抽象、概括,对简单的问题进行判断、推理,逐步学会有条理、有根据地思考问题;同时注意思维的敏捷和灵活。”这表明,在小学阶段主要是培养学生初步的形式逻辑思维能力。
(一)从数学的特点看:数学具有抽象性和逻辑严密性。
数学本身是由许多判断组成的确定体系。这些判断都是由数学术语和逻辑术语以及相应的符号所表示的语句来表达的,并且借助逻辑推理由一些判断形成新的判断。而这些判断的总和就构成了数学这门科学。小学数学内容虽然比较简单,也没有严格的推理论证,但都是经过人们抽象、概括、判断、推理、论证得出的真正的科学结论,只是不给学生进行严密的合乎逻辑的论证。即使这样,一时一刻也离不开判断、推理。这就为培养学生的逻辑思维提供了十分有利的条件。
(二)从小学生的思维特点看:小学生正处在从具体形象思维向抽象逻辑思维过渡的阶段。
特别是中、高年级,学生的抽象思维发生了“飞跃”或“质变”。具体地说,10―11岁学生开始能逐步分出概念的本质特征,能初步掌握比较科学的定义,能领会概念之间的逻辑关系,也能独立进行一些简单的逻辑分析,并进行间接的推理(即由几个判断推出新的判断)。因此可以说,这一阶段正是发展学生形式逻辑思维的有利时期。
由此可以看出,小学数学教学大纲中提出培养学生初步的逻辑思维能力,既符合数学学科的特点,又符合小学生的年龄特点。
二、培养小学生数学逻辑思维能力的策略
1、精心设计练习题,发展学生的思维能力
知识是思维活动的结果,又是思维的工具。学习知识和训练思维既有区别也有着密不可分的内在联系,它们是在小学数学教学过程中同步进行的。培养思维能力的最有效办法是通过解题的练习来实现的。在课堂练习中要努力创造活跃思维的条件,材料是训练思维能力的必要条件,能引发学生去思考,所以在练习中要给学生创造灵活解题的情境,教给学生正确的思维方法,引导他们正确的思维方向,使学生逐步形成从多方面、多角度认识事物、解决问题的能力,培养学生的创造性思维能力。
在课堂练习中,教师要引导学生从不同的角度思考同一问题,防止单调重复。解答问题时不要死盯着一处想,一处不通另找一处,这方面不行另找一方面,否则习惯于从单一方向思考问题就会导致思想僵化,丧失变通的机敏性。
设计练习题是能否促进学生思维能力发展的重要一环。一般的说,课本中都安排了一定数量的有助于发展学生思维能力的练习题。但是这些练习题不一定都能满足教学的需要,而且由于班级的情况不同,课本中的练习题也很难做到完全适应各种情况的需要。因此教师在教学时往往要根据具体情况做一些调整或补充。在教学过程中,要针对教学的重难点,精心设计有层次、有坡度,要求明确、题型多变的练习题。要让学生通过训练不断探索解题的捷径,使思维的广阔性得到不断发展。要通过多次的渐进式的拓展训练,使学生进入广阔思维的佳境。
2、进行类比迁移,培养思维的深刻性
思维的深刻性是指思维活动达到较高的抽象程度和逻辑水平,表现在能善于深入地思索问题,从纷繁到复杂的现象中,抓住发现事物的本质规律。小学生的认知结构往往缺损,他们不善于将知识纳入原有的认知结构之中,因而考虑问题缺乏深度,因此,在教学中应狠抓培养掌握应用题结构的能力。
各科教学问题,都有一个结构问题。狠抓结构训练,使学生掌握数学问题的数量关系,而不受题中具体的情节干扰,是培养思维深刻性的重要一环。由于低年级学生受年龄和知识水平的限制,他们的思维往往带有很大的局限性。为此,我在数学教学中采取多种方法。如:补充条件和问题,不变题意而改变叙述方法,根据问题说所需条件,扩题训练,拆应用题缩题训练,审题训练,自编应用题训练等等,拓展学生思维活动,训练学生思维的深刻性。
3、进行说意练习,培养思维的逻辑性
思维的逻辑性表现为:遵循逻辑的规律,顺序和根据,使思考问题有条理,层次分明,前后连贯。语言是思维的裁体,思维依靠语言,语言促进思维。教师对学生加强语言的调控,训练其口语表达能力,是学生能够有根有据进行思考的基础。因此教学中要使学生比较完整地叙述思考过程,准确无误地说出解答思路,并训练学生的语言表达简洁规范,逐步提高思维的条理性和逻辑性。
低年级学生学习数学知识,必须依赖于直观材料,使他们所学知识产生鲜明的表象。同时,要使学生获得准确丰富的感性知识,又必须通过合乎逻辑语言引导。最后大脑借助于语言,对感知的事物去伪存真,分析综合,抽象出本质特征。