360作文网

金属基复合材料范例(3篇)

栏目:报告范文

金属基复合材料范文

关键词:高强高导;TiB2Cu基复合材料;研究现状;展望

中图分类号:TB331文献标识码:A

ResearchSituationandProspectsforHighStrengthandHigh

ElectricalConductivityTiB2CuMatrixComposites

HEDaihua,LIUPing,LIUXinkuan,MAFengcang,LIWei,

CHENXiaohong,GUOKuixuan,LIUTing

(SchoolofMaterialsScienceandEngineering,UniversityofShanghaifor

ScienceandTechnology,Shanghai200093,China)

Abstract:TheTiB2Cumatrixcompositeswithexcellentperformancesofhighstrengthandhighelectricconductivityhaveextensiveapplicationprospects.Inthepaper,wefocusonthefabricationtechniquesofTiB2Cumatrixcomposites.Theprospectsforthecompositesarealsopresented.

Keywords:highstrengthandhighelectricconductivity;TiB2Cumatrixcomposites;researchsituation;prospect

0前言

高强度导电材料在航空、航天、电工及电子等行业有着极为广泛的用途,如电车及电力火车架空导线、大容量触头开关、电阻焊电极、电触头、集成电路引线框架等,都需要既具有高导电导热性又具有高强度的耐热稳定性材料[1].铜基复合材料具有高耐热稳定性和高强高导的特点,克服了传统铜合金的某些不足,大大提高了使用温度范围,能较好地满足以上需求,因此,铜基复合材料近年来得到了较大的发展.

利用弥散耐热稳定性好的陶瓷粒子强化铜基体是一种很好的方法.其中TiB2陶瓷颗粒具有高熔点、高硬度、高弹性模量,耐磨性好,热膨胀系数较低和高导电导热等特性,同其他陶瓷增强材料相比,它使金属的导电率、热导率下降量较小,使得TiB2Cu基复合材料具有较高的导电率和高的软化温度,因而TiB2作为铜基增强相的研究,已成为复合材料研究领域的一大热点[23].TiB2Cu基复合材料既具有优良的导电性,又具有高的强度和优越的高温性能,被认为是极有发展潜力和应用前景的新型功能材料,已逐渐受到各国的高度重视[45].

TiB2增强铜基复合材料的力学性能,主要取决于铜基体、增强体的性能以及增强体与铜基体之间界面的特性.用于制备TiB2Cu基复合材料的传统方法,主要是非原位复合方式,即直接添加陶瓷强化粒子到熔融或粉末基体中,强化相与陶瓷金属基复合材料的合成不是同步完成.但外加的增强颗粒往往比较粗大,增强体与基体润湿性差,颗粒/基体界面反应始终是影响传统搅拌铸造和粉末冶金的技术难题[6].本文主要介绍了目前较有发展前途的、能使第二相弥散分布于基体中、甚至具有纳米级颗粒增强铜基复合材料的原位复合制备方法.

上海有色金属第34卷

第1期何代华,等:高强高导TiB2Cu基复合材料的研究现状及展望

1纳米级颗粒增强铜基复合材料的制备方法1.1机械合金化法

机械合金化法(MA)是Benjamin[7]等于20世纪60年代为解决TiB2Cu基复合材料中的浸润性问题而最先提出的,其原理是利用固态粉末直接形成合金的一种方法,后来为广大学者接受并广泛使用.

Biselli[7]等在1994年利用机械合金化法球磨Cu、Ti和B粉,经适当的热处理制取出TiB2Cu复合材料.X射线衍射和EDS分析表明,球磨粉只有加热到600℃附近才反应生成TiB2,到800℃附近反应完成.TEM观察发现,Cu5%(体积百分比)TiB2合金700℃挤压后在晶粒内部和晶界上分布有5~15nm的TiB2粒子.球磨粉在退火初期,硬度不断增加,到600℃附近达峰值,这是由于Ti和B粉发生反应生成稳定的硼化物所致,更高温度时硬度稍有降低,但降幅很小.西安交通大学董仕节[89]等研究了烧结工艺和TiB2含量对TiB2增强铜基复合材料性能的影响.提出TiB2/Cu复合材料导电率定量计算公式如下[10]:σ=σ01-11+0.87/c(1)σ为铜基复合材料导电率,σ0为基体铜的导电率,c为TiB2体积含量.

李京徽[11]采用机械合金化方法,先球磨制备CuTiB2复合粉末,然后通过压制烧结方法制备CuTiB2复合材料.提出了机械合金化法制备CuTiB2复合材料的合理工艺是:球磨时间60h,压制压力400MPa,烧结温度900℃,保温时间2.5h.

机械合金化法是在固态下实现合金化,不经过气相、液相,不受物质的蒸汽压、熔点等物理特性因素的制约,使过去用传统熔炼工艺难以实现的某些物质的合金化、远离热力学平衡的准稳态、非平衡态及新物质合成等成为可能;增强相与基体具有很好的结合性;增强相颗粒分布均匀,尺寸细小.唯一的缺点是制备过程中可能带入杂质,纯度不够高.

1.2自蔓延高温合成法

自蔓延高温合成法(SHS)是1967年由前苏联学者Merzhannov等发明的,是利用放热反应使混合体系的反应自发地持续进行,生成金属陶瓷或金属间化合物的一种方法.刘利[12]等采用自蔓延高温燃烧合成技术研究了材料体系对合成过程中产物特性(温度、燃烧速度及产物等)的影响.研究结果表明,在体系中添加一定的金属钼或铁,明显改善了体系的润湿性;钼或铁的加入使产物中金属分布更加均匀,大大降低了产物孔隙率.同时钼的加入还明显降低了晶粒尺寸.

SHS法制备金属基复合材料有生产过程简单、反应迅速、反应温度高以及易获得复杂相或亚稳定相和应用范围广等特点.但缺点是反应难以控制,产品空隙率高,难以获得高密度的产品,不能严格控制反应过程和产品的性能,所用原料往往可燃、易爆或有毒,需要采取特殊的安全措施.

1.3粉末冶金法

粉末冶金法是生产铜及铜基复合材料结构件、摩擦材料和高导电材料的重要方法[13].制备TiB2Cu一般采用直接混合法和包覆混合法制取[14].主要工艺过程包括:(1)制取复合粉末;(2)复合粉末成型;(3)复合粉末烧结.吴波[1516]等以Cu、Ti、B4C合金粉末为原料,制备了TiB2Cu复合材料,得出最佳工艺参数为:以TiB2理论生成量为5%(质量分数)配料,在800MPa压力下对球磨后的合金粉末进行模压,在1273℃经4.5h保温烧结,经原位反应可获得TiB100弥散增强的铜基复合材料.试样的导电率为:20.2%IACS,硬度(HV)为161.张剑平[6]等采用粉末冶金法制备了TiB2Cu复合材料,研究了真空加热烧结和微波烧结两种不同烧结方式对该复合材料组织和性能的影响.

粉末冶金法是最早用来制造金属基复合材料的方法,虽然有很多优点,如可实现多种类型的复合,充分发挥各组分材料的特性,是一种低成本生产高性能复合材料的工艺技术.但由于基体和增强相在尺寸、形状和物理化学性能上有很多差别,提高TiB2增强相与铜基体的润湿性,提高基体与增强相之间的界面结合强度,从而提高复合材料的综合性能,将依然是TiB2Cu基复合材料的研究方向.

1.4喷射沉积法

喷射沉积法制备TiB2Cu基复合材料,主要包括传统喷射沉积法和反应喷射沉积法.传统喷射沉积法是熔炼好含反应元素的合金后再进行喷射沉积[17].此方法是在铜合金熔体内反应元素间发生化学反应生成弥散粒子,然后利用喷射沉积法使强化粒子均匀分布在铜基体内.反应喷射沉积法是利用液滴与反应气体、注入的粒子或不同合金的液滴间发生原位化学反应合成弥散强化铜合金[1819].在反应喷射沉积过程中,由于液滴的比表面积大和处在高温状态,能使反应元素间在液滴飞行过程中或在沉积后,能在铜基体内部原位合成细小的弥散强化相.喷射沉积法的优点主要是:晶粒细小,无宏观偏析、颗粒均匀分布于基体中;一次性快速复合成坯料,生产工艺简单,效率高.

2高强高导TiB2Cu基复合材料的研究展望随着复合材料技术的发展,原位复合法得到了迅速发展,该材料以其独特的优点,在高强高导电性TiB2Cu基复合材料的制备方面显示出巨大的应用潜力和良好的发展前景.高强度导电TiB2Cu基复合材料是综合性能优良的新兴材料,这类材料在现代国防和民用工业领域有着很大的应用潜力.自20世纪70年代以来,高强度导电铜基材料的开发研究一直非常活跃,除了开发出多种高强度导电铜基复合材料外,还派生和创造出许多新的制备技术,对此类材料的基础理论也开展了广泛的研究.现有的高强度导电TiB2Cu基材料的开发及制备技术还存在诸多难题,我国在这方面的研制与发达国家相比还存在较大差距.因此,借鉴国外经验,今后的研发工作主要着眼于以下几个方面:

(1)对现有制备工艺的研究和改进.如在传统的粉末冶金法中引入由微波加热与基座辐射加热相结合的新型工艺;原位合成技术与粉末冶金技术的综合运用等,由单一的制备方法向几种工艺相复合的方向发展.

(2)TiB2增强相向超细化、纳米化方向发展.纳米增强相尺寸较小,容易聚集,所以可使纳米增强相的表面改性;TiB2纳米粒子与基体的界面相互作用机制,可优化界面结构,充分发挥界面的增强效应;纳米TiB2增强相在铜基体中更加均匀弥散地分布等是研究的热点.

(3)增强相也由单一的TiB2颗粒向复合陶瓷颗粒方面发展.如增加TiB2和Al2O3两相颗粒进行复合增强.

(4)充分发挥材料的设计自由性,探索高性能、低成本和容易大规模生产的TiB2Cu铜基复合材料的制备工艺,推进高强度导电材料的产业化应用,将成为今后研究的重要课题.

3结束语

基于TiB2Cu基复合材料优良的导电性、高强度和耐高温等一系列优异性能,今后围绕其导电性和强度展开研究仍是一个热点,进而简化工艺流程、降低生产成本,逐渐工业化也是今后的研究方向.特别是随着我国高铁系统的发展,TiB2Cu基复合材料的需求缺口很大,所带来的市场经济效益相当可观.

参考文献:

[1]HysmansP.Aninitiationintocoppermasteralloys[J].Metall,2000,54(4):184185.

[2]WuY,LaverniaEJ.Interactionmechanismsbetweenceramicparticlesandatomizedmetallicdroplets[J].MetallTrans,1992,23A:29232937.

[3]YeJ,UlrichS,SellK,etal.Correlationbetweenplasmaparticlefluxes,microstructureandpropertiedoftitaniumdiboridethinfilms[J].SurfaceandCoatingsTechnology,2003,174/175:959963.

[4]雷静果,刘平,井晓天,等.高速铁路接触线用时效强化铜合金的发展[J].金属热处理,2005,30(3):15.

[5]李周,郭明星,程建奕,等.原位复合法制备高强高导CuTiB2复合材料[J].金属热处理,2006,25(3):5964.

[6]张剑平,艾云龙,左红艳,等.烧结方式对TiB2/Cu复合材料组织和性能的影响[J].特种铸造及有色合金,2012,32(5):469472.

[7]BiselliC,MorrisDG,RandallN.MechanicalalloyingofhighstrengthcopperaIloyscontainingTiB2andA1203dispersoidparticles[J].ScrMetalMater,1994,30(10):13271332.

[8]董仕节,史耀武,雷永平.烧结工艺对TiB2增强铜基复合材料性能的影响[J].西安交通大学学报,2000,34(7):7377.

[9]董仕节,史耀武,雷永平,等.TiB2含量对TiB2/Cu复合材料性能的影响[J].热加工工艺,2002,31(3):4749.

[10]董仕节.点焊电极用TiB2增强铜基复合材料的研究[D].西安:西安交通大学,1999.

[11]李京徽.机械合金化制备CuTiB2复合材料的工艺及性能研究[D].合肥:合肥工业大学,2009.

[12]刘利,张金咏,傅正义.TiB2Cu体系的自蔓延高温合成及致密化[J].复合材料学报,2005,22(2):98102.

[13]KimaCK,LeeS,ShinSY,etal.MicrostructureandmechanicalpropertiesofCubaseamorphousalloymatrixcompositesconsolidatedbysparkplasmasintering[J].MaterialsScienceandEngineering,2007,A44945l:924928.

[14]YihP,ChungDDL.Titantumdiboridecoppermatrixcomposites[J].JMaterSci,1997(32):17031709.

[15]吴波.TiB2颗粒增强高强高导铜基复合材料研制[D].南昌:南昌大学,2008.

[16]吴波,张萌,张剑平,等.粉末冶金法与电弧熔炼法制备TiB2/Cu复合材料[J].热加工工艺,2008,37(22):15.

[17]LeeJ,KimNJ,JungJY,etal.TheinfluenceofreinforcedparticlefractureonstrengtheningofsprayformedCuTiB2composites[J].ScrMetalMater,1998,39(8):10631069.

金属基复合材料范文篇2

【关键词】材料成型;控制工程;金属材料

1机械加工成型

现在的金属材料加工成型,主要是使用机械加工,加工机械的关键部位是加工刀具,现在使用的刀具很多是金刚石成分的刀具[1]。使用这种刀具对铝基复合材料进行加工比较广泛,铝基复合材料使用金刚石刀具加工主要可以分成三种,分别是钻销形式、铣销形式和车销形式。钻销形式使用的是镶钻麻花钻头,对铝基复合材料加工,一般情况下使用B4C颗粒钻销,而且在加工的过程中还需要添加切销液,这种液体可以增加铝基复合材料的强度。铣销形式使用材料有2.0%的粘接剂,还要8.5%的端面铣刀,这样的加工方法能强化铝基复合材料。车销形式主要使用刀具是硬合金刀具,而且在使用这种加工模式中还需要添加乳化剂,使用这种液体的目的是起到冷却效果。

2挤压和锻模塑性成型

金属材料在实际成型加工时,可以在模具的表面涂抹一层润滑剂,所选用的压力成型方法里要能有效控制压力,以减小在制造时产生的摩擦系数[2]。有研究表明,使用有效压力和涂抹润滑剂,能够使加工过程中挤压压力减少至少35%。挤压力的减少能减少对模具的损伤,减少对金属塑性的削弱,还能防止金属变形中抵抗力减弱,从而有效提高成型效率。除了使用上述方法进行加工,还可以在金属基材料中增加适量的增强颗粒,降低其可塑性,增强金属材料的变形抗力,再在加工过程中增加一定的温度,使增强颗粒和金属材质加快融合,加强金属基材料的可塑性[3]。一般来说,在金属基材质中使用增强颗粒会影响挤压的速度,如果在加工的材料中使用的增强颗粒较多,加工时就要严格控制挤压速度。如果挤压速度过快,很容易造成材料成型以后便面出现横向裂纹。总之,在使用挤压和锻模塑性成型技术对金属基材质加工的过程中,不仅需要在模具上涂抹润滑剂,还需要控制加工中挤压的速度,提高相应的温度,并对这些技术严格控制,只有这样,才能够保证加工的质量。

3铸造成型

使用复合材料的加工成型技术中,最常用的一种方法就是使用铸造成型技术。实际加工过程中,对金属复合型材料添加增强颗粒以后,这样的情况下熔体粘度会有增强,同时流动性也会增强,在加上增加增强颗粒的过程中会使用熔体的方法使其融合在一起,同时因为经过高温作用会产生一些化学反应,这种时候会改变金属材质的基础性质。为了控制金属材质基本性能,在熔化金属材质过程中要对温度严格控制,同时在保温时间上也要采用严格控制方法。在高温情况下对增强颗粒的添加容易发生界面反应,比如在添加的增强颗粒是碳化硅颗粒容易出现这种现象。出现界面反应以后熔体的粘度会增强,会出现难以浇筑现象,而且还会影响到材质本质。解决问题的方法是使用精炼法,同时还要添加一定量的变质添加剂,使用这种方法在锻造成型是不适合使用在添加了增强颗粒的铝基复合材料中。

4粉末冶金成型

粉末冶金成型技术使用最为早,因此这项技术在实际经验比较丰富,该技术使用在成型制造主要是对金属基复合材料使用,还可以对颗粒复合材料零部件和制造晶须中使用。同时粉末冶金技术在后期也使用在一些尺寸较小,造型比较简单,或者是一些高精密要求的零部件生产加工中。使用粉末冶金技术加工零部件,有着很多方面的优点:(1)成型的组织细密;(2)产品加工成型以后增强相分布均衡;(3)成型以后增加相可调节;(4)界面的反应减少。随着不断对该技术的研究,现在可以把粉末冶金技术使用到更多成型加工中。比如自行车架加工,管材加工、自行车零部件加工等。使用粉末冶金技术加工的产品有着较强的耐磨性。在加工时使用该技术在汽车的产品生产,飞机零部件生产和航天器材零部件生产。

金属基复合材料范文

1在机械制造专业上应用复合结构材料

与传统材料相比金属复合材料具有明显的优势。由金属复合材料质量轻于传统的钢铁材料,其抗性也略胜一筹。另外,金属复合材料的性能也更适用于机械制造。现阶段金属复合材料相对而言使用性能更高,现今阶段常见的金属复合材料大体分为以下四种。

1.1不锈钢复合钢板

由合金元素组成的不锈钢板决定了不锈钢板的性能差异。这些元素促成了不锈钢板在金属材料中拥有最强的耐化学腐蚀和电化学腐蚀性,有利于保障不同材质材料的原子结合率达到百分之百。同时其导热性能较好,适用于焦化设备。有利于降低运营成本提高机械使用寿命[2]。

1.2金属粒塑料复合结构材料

金属粒塑料复合结构材料能够有效改善传统金属缺少的导电和导热性,可以很大程度的降低线膨胀系数,其质量小、强度大等优势在机械设备制造中得到了很好的应用。

1.3碳纤维石墨纤维复合结构材料

这种复合结构材料的劲度、强度与重量比、比刚度较高,性和耐磨损性良好,线膨胀系数小、耐摩擦性能高,同时由于耐热性和耐腐蚀性良好的特性被广泛于高新机械制造技术之中。

1.4弥散强化复合结构材料

弥散强化复合结构材料有利于提升机械设备的耐热性和强度值。弥散强化复合结构材料广泛适用于耐热性良好的机械制造中[3]。

2复合材料在冲压模具制造上的应用

由于工作条件的差异,冲压模具对材料的要求也各有不同。这些模具材料大致可以分为冲裁模材料、冷挤压模材料、拉深模材料这三种材料的要求[4]。而在模具制造中对原材料的需求较高,必须要达到能够承受冲击、振动、拉伸、摩擦拉伸等巨大负荷的要求,能够保障在高温材料下工作。目前大多以钢材为制造冲压模具的主要制作材料,而碳素工具钢由于其性价比高,加工塑形难度小,在模具的机械制造中被广泛应用。但由于其承载能力低,对于硬度大塑性低的机械零部件制造难以适用。而金属复合材料的性能好可以有效避免零部件在工作过程中受到的强烈的磨擦和冲击。

3复合材料在机械制造上的应用

研究金属基复合材料是当代新材料技术领域中的重要内容之一。金属复合材料本身具有许多优良特性,但同时也存在着一些限制因素。不论其在航天航空领域的应用还是从当今一些小的应用范围来看,相比于普通的材料的突出优点还是在于低热膨胀系数和高疲劳极限。在机械制造的过程中想要确定原材料需要根据机械零部件的工作环境和要求来进行选择,既要避免零件在工作过程中失效的问题,又要保障延长机械的使用寿命。与传统的材料相比,金属材料的综合力学性更好,同时还具有导电、导热、耐磨、阻尼性好等特点。而且其膨胀系数几乎为零。现阶段金属复合材料性能的优越性和应用范围的广泛性优势日益突出。同时由于复合材料的可塑性强、结构功能一体化、抗疲劳断裂性能好等优越性能,在机械制造过程中逐步成为其他传统金属材料无法替代的功能和结构材料,更是促进现代机械制造业发展的重要基础。金属复合材料应用于现代化的机械设备中有利于合理的整合资源,响应国家节能减排的政策方针。金属复合材料由于其容易造型、重量轻、等优势相对而言更便于推广,方便使用和制造,其优良性能可适应机械制造工作中的恶劣环境,并有较高的抗腐蚀的作用,其在机械制造中的使用和推广深受喜爱。金属复合材料由于其造价低,已维修的特质。可有效避免机械零部件的磨损报废率,有利于带动新兴工业的发展,形成新的经济增长点。

4结语

从长远的角度看,金属复合材料在这些行业的应用不仅可以提高生产的系数,更可以降低成本,赢得更多的经济效益。金属复合材料由于其质量小、强度大弹性良好、抗化学腐蚀等优势,现已经广泛应用于机械制造领域当中。近年来我国机械制造方面针对新型金属复合材料性能的研究和运用获得了巨大的进步,金属复合材料在机械制造工业当中的运用比例也逐渐加强。在大多数大型企业的设备都开始应用金属复合材料,会使很多的轻工业从中受益,在与日俱增的激烈竞争中取得更稳定的立足之地。

参考文献

[1]杨浩瀚.金属复合材料在机械制造方面的应用前景[J].工程技术:全文版,2016(1):00252-00252.

[2]单忠德,刘丰,宋祥宇,等.一种金属复合材料零件的成形方法:,CN104550959A[P].2015.

[3]李壮苗.当代产业大发展背景下的金属爆炸复合材料的热处理研究[J].时代报告,2016(24).

  • 上一篇:煤矿井下电工基础知识范例(12篇)
  • 下一篇:金属冶炼范例(3篇)
  • 相关文章

    推荐文章

    本站专题