关键词:重金属污染;污染物来源;预防措施
中图分类号:F124.5文献标志码:A文章编号:1673-291X(2014)31-0300-02
土壤污染是指由于具有生理毒性的物质或过量的植物营养元素进入土壤,超过土壤的自净能力,从而导致环境恶化。而土壤重金属污染主要受人类活动的影响,通过大气、水以及农资等使重金属进入到土壤中,导致土壤中重金属的含量明显高于环境背景值,并造成土壤环境恶化和污染。
一、土壤重金属污染的概念
通常地说,重金属是指密度大于5.0以上的元素,这些元素大约有45种元素。但由于不同的重金属在土壤中的毒性差别较大,所以在环境科学中人们通常关注锌、铜、钴、铬、钴、汞、镍、锡、镉、铅、钒等。硒、砷虽然不是金属,但由于它的某些性质及毒性与重金属相似,因而也将硒、砷列为重金属范畴。由于锰和铁在土壤中自然含量相对较高,一般不列为重金属。
土壤重金属污染是指人类不合理活动将重金属物质带入到土壤中,导致土壤中重金属含量明显高于可承受的合理含量、并造成土壤质量退化、生态与环境恶化与破坏的现象。有些重金属是土壤本身含有的,如植物生长所必须的锰、铜、铁、锌等。只有当进入土壤的重金属元素累积的浓度超过了作物需要和可忍受范围时,作物才会出现中毒症状,或作物生长并未受重金属的危害但是其金属的含量超过人畜承受的标准,造成人畜的重金属危害时,也可以认为土壤已经被重金属污染了。
二、重金属的来源与分布
土壤中重金属元素按其化学生物性质可以分为两类:一类是在一定浓度范围内可以促进并维持生物健康生长的必需元素,但如果金属浓度超过可承受范围,就会有机体中毒现象的发生,如锌、铜、锰等;另一类则是影响生物正常生长且有害与生物的健康的元素,如镉、汞等。
引起土壤重金属污染的途径有许多种,土壤中本身含有的重金属,不属于污染的对象,因为这些重金属的含量一般不构成对土壤的污染。从环境学上来看,土壤重金属的污染来源,主要是人类的工农业生产活动和生活活动引起的土壤重金属远高于土壤本身含有的重金属的含量,造成土壤污染[1]。
(一)有毒气体的排放
有毒气体如汽车尾气、煤的燃烧、化工厂产生的有毒气体以及轮胎转动磨损产生含重金属的大量粉尘等,进入大气后随着大气流动把有毒气体中的重金属带进土壤或水体中。以陕西省为例,2012年全省的工业废气排放总量达到14767.4亿立方米,烟尘排放量为385522.4吨,这些废气和烟尘含有大量的Cu、Zn、Pb、Co、Cd,主要来自含铅汽油的燃烧,汽车轮胎磨损产生的含铅的粉尘等。污染物的分布呈现一定的规律,一般成条带状和片状分布,如果汽车尾气作为重金属的污染源,它的分布主要以公路、铁路为中心向两侧辐射,中心污染较重,远离公路两侧的土壤污染程度逐渐减弱,另外随着时间的推移,不同重金属污染在土壤中具有很强的叠加效应,加剧了土壤污染[2]。而经过自然和雨水沉降进入土壤的重金属污染,多以有毒废弃的堆积物、工厂烟囱为中心,向四周扩散,导致城市的郊区土壤污染为主,距离城市越远污染也就越小,其中污染程度还与人口密度,城市土地利用程度,重工业水平等密切相关。
(二)农药、化肥和塑料薄膜的使用
在用农药喷洒作物时一般只有少部分落在农作物体上,而大部分都落到地表从而进入土壤,其中一些农药中含有某些有害的重金属如汞、铅、砷等,其残留有效期长达几十年。因此,长期使用含重金属农药也会在一定程度上造成农田土壤的重金属污染;尤其化学肥料中的磷肥含有大量的重金属,虽然在短时期内会对农作物的生长起到促进作用,然而长期使用会对土壤起到破坏作用。农用塑料薄膜在土壤中长期存在,在阳光照射下分解产生大量的Cd、Pb也会造成土壤重金属的污染。
(三)污水灌溉农田
污水灌溉也是造成土壤重金属污染的一个重要途径,城市里的生活污水、商业污水和工业污水等未经处理直接排入河流,造成河流污染。河流水体中含有大量的重金属离子,农民朋友们利用这些污水灌溉农田,长期灌溉就造成土壤中重金属含量过高,引起突然污染。据相关资料显示,2014年上半年西安日排生活污水130万吨,其中110万吨得到处理,有20万吨的污水直接排放。河全段水质Ⅳ类,污染源主要为生活污水,因该地区市政管网没有接通,导致周边楼盘小区的生活污水流入河。在位于西安市阿房一路附近的不足2公里的河段上,两岸分别有30多个大小不一的排污管,这些排污管正在不断地向河内排放黑黄色污水,河面上泛起一片白色泡沫,气味刺鼻难闻。这些污水流入渭河,然后被渭河两岸的农民抽水灌溉农田,造成土壤污染。
(四)矿山废水污染
各种有色金属矿山的开采、治炼、矿渣排放的过程中都会产生酸溶液的矿液,并通过矿山排水和降水沉降进入土壤直接或间接地导致土壤的重金属污染,对人们的健康构成严重威胁。根据近期的全国土壤污染调查结果来看,部分地区土壤重金属污染严重,全国土壤总的点位超标率为16.1%,从污染分布看,南方土壤污染重于北方;长江三角洲、珠江三角洲和东北老工业基地等部分区域土壤重金属污染突出。西南、中南地区土壤重金属超标范围大;隔、汞、砷、铅含量分布呈现从西北到东南逐渐升高的趋势。在有色金属长期开采的地区,金属冶炼以及含重金属的工业废水废渣排放造成土壤污染,导致粮食重金属超标。最近令人担忧的“镉大米”和重金属蔬菜事件还萦绕在人们的心里。
三、土壤重金属的危害
土壤重金属产生的危害主要有以下几个途径:(1)暴露的土壤受到重金属的污染,通过土壤影响植物,又经过食物链为动物和人类所吸收。(2)通过降水作用使重金属溶于雨水中,通过雨水的沉降地表和地下径流使水体发生污染。(3)外界环境条件因素的刺激下提高了土壤中重金属的活性,使重金属较容易为植物吸收利用通过食物链进而对人类和动物产生毒害作用。(4)为提高土壤肥力和病虫害的防治,往往会在植物生长期添加含有微量重金属的化肥和农药,植物会吸收部分重金属,进而进入食物链而导致动植物受害。据国家环保局统计,中国每年重金属污染的粮食达1200万吨,直接经济损失200亿以上。
四、控制土壤重金属污染的对策和措施
(一)控制土壤重金属污染的对策
目前治理土壤重金属污染的技术主要集中在土壤修复,通常包括生物修复、化学修复、工程修复和农业修复。生物修复技术是最近十多年用于治理土壤重金属污染的一种技术,主要是指利用各种类型生物的分解和净化作用把土壤中的重金属分解成各种无机盐、水和二氧化碳的工程技术。这种技术通过两种途径来实现,一是通过生物各种形式的作用进而改变重金属的化学形态,使重金属得到固定或解毒,降低重金属在土壤中的活性不易被植物吸收;二是通过生物吸收、代谢达到对重金属的削减、净化和固定作用。生物修复技术主要包括微生物和植物的修复技术,其修复效果较好、投资较低、且易操作和便于管理,且不易产生二次污染。因而逐渐受到重视,成为重金属污染修复研究的热点。
化学修复是通过向重金属污染的土壤中施加改良剂,降低重金属生物的有效性而达到修复的目的。如果被污染的土壤呈酸性,可采用石灰、矿渣等碱性物质作为改良剂,达到酸碱中和,降低重金属的含量,从而有效降低植物体的重金属浓度[3]。如果土壤中Hg污染为主,可使Hg形成难溶性的碳酸汞、氢氧化汞或水合碳酸汞,明显降低汞的有效性和作物吸附[4]。在碱性土壤中施用磷酸盐类物质可使重金属形成难溶性磷酸盐。在一定PH值下,重金属能被铁、锰氧化物所固定。常见的用于治理土壤重金属污染的稻草、牧草、紫云英、家畜粪肥以及腐殖酸等,这些物质通过其活性与重金属元素Zn、Mn、Cu、Fe发生化学反应,降低重金属的有效性。
(二)控制土壤重金属污染的预防措施
各种土壤修复的措施都有各自的优缺点,比如工程修复虽然治理比较彻底,然而大量被污染的土壤被置换或覆盖,实施的费用非常高,不从根本上治理,被更新的无污染的土壤又很快再次被污染,并且还要对换出的污染土壤进行堆放或处理。其他的修复方法效果不是很好,局限的范围很小。所以如果不解决污染的源头,所有的治理都是治标不治本的措施,达不到根本解除土壤重金属污染的目的。因此,预防比治理更重要。
1.宏观上加大环保宣传力度和提高工艺水平
土壤重金属污染属于环境污染的重要组成部分,把环境保护概念写入学生教材,对国民进行全民生态教育。环境教育包括环保习惯和环境专业知识教育两个部分,家庭垃圾分类等习惯养成教育从幼儿园开始进行,环境专业知识教育贯穿整个教育体系。环境保护不能只依靠法律法规去强制执行,重要的是改变人们的观念,从根本上杜绝污染的源头。
2.微观上严格控制污染物的排放
土壤重金属污染主要是由工业“三废”排放,所以要严格控制污染物排放,城市和乡镇的新、扩、改建设项目要严格执行环境影响评价制度,以及污染物的总量控制系统,严格执行工业“三废”排放标准颁发的状态,尽量减少污染物的排放。化肥、农药、农用塑料薄膜含有重金属元素,建立一个科学合理的生产和使用技术规范,应该限制单位面积农田的数量,品种和施肥方法,更多的有机肥料和生物肥料,加强监测农田的化肥和农药残留。
参考文献:
[1]庞奖励.西安污灌区土壤重金属含量及对西红柿影响的研究[J].土壤与环境,2001,(2):94-97.
[2]郑喜.土壤中重金属污染与防治[J].地质通报,2002,(1):79-84.
最近一些年,很多人认为我国不断出现的癌症村和重金属污染密切相关。目前,我国正在绘制重金属元素“人类污染图”,该图完成以后,这种相关性究竟有多大将会进一步明确。不过专家也表示,癌症是多方面因素共同促成的结果,其和重金属污染究竟有多密切的关系还需要进一步研究论证。
绘制78种元素的“人类污染图”
以1比20万图幅为基准网格单元,每一个网格都布设采样点位,每个点位都采集一个深层土壤样品和一个表层土壤样品。其中深层样品来自1米以下,基本代表未受人类污染的自然界地球化学背景;表层样品来自地表25厘米以上的部分,这也是人类活动最为密切的部分。然后用表层重金属物质含量减去深层含量,就可以得出重金属元素对土壤的污染程度。
最近从国土资源部、中国地质调查局透露出来的信息显示,我国正建立涵盖81个化学指标(含78种元素)的地球化学基准网,并得出重金属元素的“人类污染图”。
多重迹象显示,不少重金属污染区域已经和癌症高发区呈现出密切的相关性。最近一些年,我国部分民间人士陆续披露我国不断出现的癌症村,并据此开始绘制我国的癌症村地图。截至目前,已经披露的癌症村达到400多个,很多人发现,不少癌症村和重金属污染呈现出密切的相关性。
例如,在重金属污染的重灾区湖南株洲,当地群众的血、尿中镉含量是正常人的2至5倍。在辽宁省锦州葫芦岛一带,土地主要受锌厂污染影响,污染元素以镉、铅、锌为主。与此同时,这些年这里得癌症的人群比较多,有不少年轻人都因为癌症而死亡。
在另外一个方面,我国大面积的农产品也受到重金属物质的严重污染。中国水稻研究所与农业部稻米及制品质量监督检验测试中心2010年的《我国稻米质量安全现状及发展对策研究》称,我国1/5的耕地受到了重金属污染,其中镉污染的耕地涉及11个省25个地区。其中在湖南、江西等长江以南地带,这一问题更突出。
重金属污染从哪里来?
北京农学会秘书长袁士畴在接受记者采访时表示,我国土壤中严重的重金属污染来自多个方面。从源头来看,土壤重金属污染,有一部分是源于工业“三废”污染,有一部分是来自农业生产中的化肥和农药污染。
首先是源自工业“三废”的污染,这也是我国重金属污染最为严重的因素,其在一些重金属矿产丰富的地方尤为突出。由于重金属废水、废渣的随意排放,导致一些重金属元素污染了当地的水源、土壤,而后又随着饮食进入人体。其在体内富集到一定程度就会给人体造成伤害,并导致癌症等一系列的疾病的发生。
“化肥中的重金属污染长期以来一直为人们所忽视。”袁士畴说,到上个世纪末,我国已经成为世界上化肥第一生产大国和第一消费大国。这两个第一的背后,却潜藏着化肥大面积滥用导致重金属污染的隐忧。
袁士畴表示,国际公认的化肥施用安全上限是225千克/公顷,但目前我国农用化肥单位面积平均施用量达到434.3千克/公顷,是其安全上限的1.93倍。上个世纪50年代,我国一公顷(15亩)土地施用化肥8斤多,现在是868斤左右,60年间化肥施用量增长了100倍。
“但这些化肥的效用绝大部分都没有用完,最后变成了污染。”袁士畴说化肥滥用对土壤环境的一个重要污染就是会导致土壤中重金属含量增加。从化肥的原料开采到加工生产,都会给化肥带进一些重金属元素或有毒物质,其中磷肥最为典型。目前我国施用的化肥中,磷肥约占20%,磷肥的生产原料为磷矿石,它含有大量有害元素F(氟)和As(砷),同时磷矿石的加工过程还会带进其它重金属比如镉、汞等。
另外一些含有重金属物质的农药滥用也会带来重金属污染。袁士畴说,例如含汞农药长时间使用以后,汞就会大量在土壤中富集下来,并随着一些农产品进入人体。
重金属与癌症相关性有待深入研究
近日,全国肿瘤登记中心的“2012中国肿瘤登记年报”显示,我国每年新发癌症病人约312万例,平均每分钟就有6人确诊癌症,每年因癌症死亡超过200万人。
目前,全国癌症发病趋势严峻,发病率与死亡率均呈持续上升趋势。而大量的癌症患者就来自重金属污染严重的区域。
不过全国肺癌防治联盟副主席、首都医科大学肿瘤专家支修益在接受记者采访时表示,并非所有的重金属都是对人体有害的。一般将重金属分为两类,生命活动所必需的微量元素和对人体有害的重金属。例如锰、铜、锌等为生命活动所必需的微量元素,对人体的生长发育和新陈代谢有益。但支修益告诉记者,对人体有害的重金属要占大部分,如汞、铅、镉等在人体过量都会给健康造成极大的危害,甚至是致人死亡。
袁士畴告诉记者,这些有害的重金属常常通过人体无法避免的渠道进入体内,如呼吸污染的空气,喝污染的水,或者吃被污染过的土壤种植的农作物。
支修益表示,近年来我国肿瘤患者和死亡率迅速上升与人口老龄化、不健康生活方式、环境污染等多方面的因素有关,从全国而言,还不能简单地说重金属污染加剧导致了患癌的增加。
“我们只能说重金属污染是一种潜在的致癌因素,它们和癌症究竟有多大的关系,还需要进一步的深入研究。如果一个地方重金属污染严重,同时居民患癌比例也很高,则需要进行专门深入的调查,搞清它们之间的相关性。”支修益表示。
“人类污染图”需要及时公开
针对我国日益严重的重金属污染,采取相应措施已经尤为必要。
在农业生产上,袁士畴表示,为了减少化肥和农药源头方面重金属的污染,我国应该大力减少化肥和含重金属物质农药的使用,同时大力发展现代生态农业。
“现代生态农业的高级阶段就是有机农业,其完全禁止农药和化肥的使用,生产的全是绿色的有机粮食、蔬菜或者水果,可以完全免除化肥和农药来源的重金属污染。”
然而,由于国内大量的土地已经遭受到工农业生产重金属的严重污染,袁士畴认为我国很多地方的农产品已经很难避免重金属的污染,对于一些重金属污染严重的地区,实施土壤改造或者放弃农产品的种植将会成为没有办法的办法。
关键词:城市土壤;重金属污染;植物修复技术;大生物量非超富集植物;综合评估筛选法
中图分类号:X53文献标识码:ADOI编码:10.3969/j.issn.1006-6500.2014.03.011
城市土壤因受人类活动强烈影响而区别于自然土壤,主要指厚度大于50cm的非农用土壤,通常出现在城市和城郊区域[1-3]。城市化过程中的工业发展、城建工程的实施和居民日常生活等人类活动排放的污染物,以各种形式直接或间接地进入城市土壤,改变了城市土壤的理化属性,造成了城市土壤的重金属污染[4]。城市土壤重金属既可通过直接接触密集的城市人群而危害人体健康,又可通过对大气、水体的影响而影响城市生态环境,进而影响生命安全[5-6]。城市土壤既可以为城市绿色植物的生长提供养分,是其必不可少的生长介质,又可以为土壤微生物提供栖息地,是其能量的重要来源之一,所以城市土壤是城市生态系统尤为重要的组成部分,与城市生态环境息息相关[5]。因此,城市土壤重金属污染修复技术成为国内外学者研究的热点领域。
1城市土壤重金属污染现状
原成土母质和人为活动是城市土壤重金属的来源,其中工业生产、机动车辆尾气排放、生活垃圾堆弃等人为活动是造成城市土壤重金属污染的主要因素。一方面,人为活动产生的重金属以气溶胶的形式进入大气,经过干湿沉降间接进入土壤;另一方面,附着于废弃物中,直接排入城市土壤,造成重金属污染,甚至污染地下水。并且城市土壤重金属污染具有一定的空间分布特征,总体表现为城区内部土壤重金属含量明显高于郊区,并且交通干线两侧、人类活动密集区、老工业区重金属污染较为严重,而受人为活动影响较小的风景区、公园等功能区土壤重金属污染则属于中低度污染和轻微生态风险。
城市土壤Pb、Zn、Cu、Cd等重金属多介质复合污染给人体健康带来了极大的风险。食物链传递研究表明,重金属已经不同程度地污染了我国的城市郊区菜地土壤[7-9],重金属含量已超标的蔬菜大量向城市供应。除此之外,以扬尘为载体进入大气的城市土壤重金属,最终可通过人体的新陈代谢作用而进入体内并逐渐积累,从而直接威胁到人体健康。研究表明,北方沙尘暴天气发生时,大气环境中土壤重金属元素浓度迅速增加,Pb、Zn、Cu、Cd的浓度比平常高出3~12倍[10-11]。据相关研究部门统计,上海市大约有1/3的大气颗粒物来自于土壤扬尘[7]。此外,城市土壤重金属元素的积累对植物、动物、微生物的生理生态等方面也产生一定的毒害,导致城市土壤的退化。
2土壤重金属污染修复研究现状
近年来,科研工作者不断探索重金属污染土壤的修复技术,使物理、化学和生物等修复技术得到了较快的发展。由表1可知,尽管这些物理、化学修复手段对治理重金属污染土壤具有非常重要的实践意义,但仍具有投资大、修复效率低、对周围环境干扰性大、易导致次生污染等诸多缺点。相比较而言,尽管植物修复技术有着种质资源较少、修复效果待改善和植物生长条件等局限性,但其仍具有技术和经济上的双重优势,不仅能够利用绿色植物的新陈代谢活动来修复土壤环境中的重金属污染,而且具有一定的观赏价值,有助于园林城市的建设。
广义的植物修复技术是在多学科交叉点上发展起来的新技术,建立在植物对某种或某些化学元素的耐性和积累性基础之上,利用植物及其根际共存微生物体系的吸收、挥发、降解和转化作用来清除环境中的污染物的一门环境污染治理技术[12]。通常所说的植物修复技术是指选择具有吸收富集土壤中污染元素能力的植物,并将该植物种植于特定重金属污染的土壤上,随着该植物收获和植物组织器官的妥善处理,便可移除土体中的该种污染重金属,最终达到污染治理与生态修复污染土壤的目的[13]。这种技术因为其在土壤污染治理方面的巨大应用潜力,吸引了各国相关领域的科学家进行相关研究,并取得了一定的进展。
2.1超富集植物修复技术
现今已经发现的超富集植物约500多种,主要分布在气候温和的欧洲、美国、新西兰及澳大利亚的污染区,但利用植物修复污染土壤则是近几十年的工作。目前,关于超富集植物对重金属耐性和积累性机理、修复性能改进及应用技术等方面的研究已经在全世界范围内展开,并且也取得了一定的进展。此外,植物修复技术商业化因其工程性的试验研究以及实地应用效果,在未来具有巨大的商业前景。
2.2超富集植物修复的局限性
超富集植物在修复土壤重金属污染方面表现出显著的生态效益、社会效益和经济效益。尽管利用植物修复技术修复重金属污染土壤具有廉价、有效、使土壤免受扰动等优点,但是在实际应用中,超富集植物由于其固有的特点,大大限制了在植物修复技术中的应用。第一,大部分超富集植物生物量低下,严重制约了修复效率,且植株矮小,不便于机械化作业;第二,超富集植物引种易受到地域性限制,因其多为野生植物种质资源,区域性分布较强,难以适应新的生物气候条件;第三,超富集植物往往只适用于某种特定的重金属元素,具有较强的专一性,对土壤中其他含量较高的重金属则表现出中毒症状,从而在重金属复合污染土壤修复中的应用受到了限制;最后,超富集植物根、叶、果实等器官机械折断、凋谢或腐烂等途径使重金属重返土壤,易造成二次污染,间接降低了修复效率。
2.3大生物量非超富集植物与超富集植物修复技术
Ebbs等[16]认为超富集植物以外的其他大生物量非超富集植物也具有修复重金属污染土壤的可能性,并提出农作物地上部可观的生物量能够补偿地上部较低的重金属含量的观点。周振民等[17]指出了大生物量非超富集植物修复技术是一项非常有发展潜力的植物修复技术。因此植物修复技术走向工程实践的主要任务是筛选与开发大生物量、富集重金属能力强且具有观赏性的复合型修复植物。
3土壤重金属污染大生物量植物修复技术研究进展
现有超富集植物种质资源贫乏,并且其具有自身的局限性,修复效果也有待于进一步加强,故植物修复技术还不成熟。另外,评价植物修复重金属污染的标准是重金属迁移总量,然而已经发现的超富集植物因其生物量小、生长缓慢而使重金属迁移总量相对较低,自然种群中存在着对重金属具有一定耐性的大生物量植物,虽然其单位质量的重金属含量尚不满足超富集植物的定义,但此时其所积累的重金属绝对量反而比超积累植物的绝对量大。因此大生物量非超富集植物对城市土壤重金属的修复作用更大。
3.1大生物量修复植物的优势
以大生物量植物种质资源作为筛选修复植物对象是有依据的,一方面,大生物量修复植物具备普通植物的功能特点;另一方面,大生物量修复植物还有普通植物不具备的诸多优点。主要表现为:
(1)高生物量植物种质资源丰富,有着巨大的潜力,可为筛选提供坚实的基础;
(2)在进行城市土壤修复、调控大气环境的同时,能够美化环境,一举两得;
(3)具备观赏性的大生物量修复植物,不会进行食物链的传递积累,减少了对人体的危害;
(4)大生物量植物对人类健康也有着一定的作用,如油松、核桃、桑树等对杆菌和球菌的杀菌力均极强,花卉芳香油可抗菌,提高人体免疫力,可作为保健食品或调控大气环境;
(5)在长期的生产实践中,品种选育、植物栽培以及病虫害防治等经验日益丰富。因此,筛选大生物量植物修复城市土壤重金属污染是可行的。
3.2大生物量植物的耐性与积累性研究
4大生物量修复植物的判断标准与筛选
由周振民等[17]对重金属污染土壤大生物量修复植物进行的综合研究可知,其筛选对象主要为部分农作物、杂草、树木和花卉。修复城市土壤的大生物量植物应具有一定的生态功能和观赏价值,按观赏部位可分为观花的、观叶的、观芽的、观茎的、观果的五类;从低等到高等植物,从水生到陆生;有草本也有木本,有灌木、乔木和藤木,种类繁多。因此筛选既具有观赏性又具有生态修复功能的大生物量修复植物就尤为重要了。
为了便于采取定性与定量相结合的综合评估分析法筛选出具备此能力的大生物量修复植物,这就要求植物符合一定的判定标准。耐性特征、积累特征、观赏性和生态调控功能是主要的评定指标,其中耐性特征和积累特征是最基本的判断标准。耐性植物应该能够在较高重金属污染浓度的土壤上完成生命周期,并且污染处理的植物地上部生物量与对照植物的地上部生物量相比没有明显的下降,这才说明该植物对重金属污染的土壤具有一定的耐性。积累特征以转移系数和富集系数综合表示,李庚飞等[25]研究表明,在利用大生物量非超富集植物进行重金属污染修复时,若植物对某重金属元素的转移系数和地上部分富集系数均大于0.1,说明植物对该金属元素具有富集的潜力。此外,植物观赏性和固碳释氧、吸收有毒有害气体等生态调控功能等指标的纳入,对采用综合评估筛选法进行复合型修复植物的筛选更有意义。
大生物量植物种类繁多,盲目地筛选是不科学的。因此首先应该搜集资料,调查各种植物的特点及其本身生长习性,从中初选出最有可能成为修复植物的种质资源进行研究,之后再进一步确认。例如,可从受污染严重的区域采集仍然能够正常生长的物种进行试验,或从生长不易受环境影响的物种着手。初选大生物量修复植物在一定程度上可由植物的根、茎、叶初步判断[26]。生物量与株高成正比,而生物量越大,修复效率也相应增大,因此株高是修复植物的重要选择依据。为使筛选出的修复植物具有更好的实践性,也应尽量地人为模拟与特定重金属污染城市土壤条件相一致的环境条件,利用盆栽试验筛选出大生物量复合型修复植物。
5结语
我国对植物修复重金属污染土壤的研究起步较晚,筛选工作做得不多,大量有潜力的修复植物还有待发现,尤其是以大生物量修复植物为筛选对象将成为一个突破口。总的来说,用大生物量修复植物修复污染土壤的潜力巨大。在城市污染土壤修复中,大面积地应用与其他手段相结合的大生物量修复植物,既可以美化环境,又能带来巨大的经济效益。因此进一步提高大生物量修复植物的修复效率,应从生态位的理论出发,开展植物品种的筛选与培育、复合修复技术应用、修复效果验证试验等方面的研究,以适应城市需要,并将植物修复、观赏植物苗木生产、园林景观建设与生物质能利用有机结合,形成环境污染修复产业,走循环利用绿色发展之路。
参考文献:
[1]张磊,宋凤斌,王晓波.中国城市土壤重金属污染研究现状及对策[J].生态环境,2004,13(2):258-260.
[2]张甘霖,朱永官,傅伯杰.城市土壤质量演变及其生态环境效应[J].生态学报,2003,23(3):539-546.
[3]黄勇,郭庆荣,任海,等.城市土壤重金属污染研究综述[J].热带地理,2005,25(1):14-18.
[4]ChenJ.RapidurbanizationinChina:Arealchallengetosoftprotectionandfoodsecurity[J].Catena,2007,69(1):1-15.
[5]DeKimpeCR,MorelJL.Urbansoilmanagement:Agrowingconcern[J].SoilScience,2000,165:31-40.
[6]李敏,林玉锁.城市环境铅污染及其对人体健康的影响[J].环境监测管理与技术,2006,18(5):6-10.
[7]黄益宗,郝晓伟,雷鸣,等.重金属污染土壤修复技术及其修复实践[J].农业环境科学学报,2013,32(3):409-417.
[8]张勇.沈阳郊区土壤及农产品重金属污染的现状评价[J].土壤通报,2001,32(4):182-186.
[9]王庆海,却晓娥.治理环境污染的绿色植物修复技术[J].中国农业生态学报,2013,21(2):261-266.
[10]王玮,岳欣,刘红杰,等.北京市春季沙尘暴天气大气气溶胶污染特征研究[J].环境科学学报,2002,22(4):494-498.
[11]庄国顺,郭敬华,袁蕙,等.2000年我国沙尘暴的组成、来源、粒径分布及其对全球环境的影响[J].科学通报,2001,46(3):191-197.
[12]盛连喜,冯江,王娓,等.环境生态学导论[M].北京:高等教育出版社,2002:76-79.
[13]吴志强,顾尚义,李海英,等.重金属污染土壤的植物修复及超积累植物的研究进展[J].环境科学与管理,2007,32(3):67-72.
[14]BrooksRR,LeeJ,ReevesRD,etal.Detectionofnickeliferousrocksbyanalysisofherbariumspecimensofindicatorplants[J].JournalofGeochemicalExploration,1977(7):49-57.
[15]ChaneyRL.Plantuptakeofinorganicwasteconstituents[C]//PARRJF.LandTreatmentofHazardousWastes.NoyesDataCorporation,NewJersey:ParkRidge,1983:50-76.
[16]韦朝阳,陈同斌.重金属超富集植物及植物修复技术研究进展[J].生态学报,2001,21(7):1196-1203.
[17]周振民,朱彦云.土壤重金属污染大生物量植物修复技术研究进展[C]//第三届全国农业环境科学学术研讨会论文集.天津:[出版社不详],2009.
[18]刘维涛,张银龙,陈喆敏,等.矿区绿化树木对镉和锌的吸收与分布[J].应用生态学报,2011,19(4):725-756.
[19]黄会一,蒋德明,张春兴,等.木本植物对土壤中镉的吸收、积累和耐性[J].中国环境科学,1989,9(5):323-330.
[20]余国营,吴燕玉,王新.杨树落叶前后重金属内外迁移循环规律研究[J].应用生态学报,2009,7(2):201-208.
[21]王广林,张金池,庄家尧,等.31种园林植物对重金属的富集研究[J].皖西学院学报,2011,27(5):83-87.
[22]许妍,周启星.天津城市交通道路扬尘排放特征及空间分布研究[J].中国环境科学,2012,6(12):34-39.
[23]刘家女,周启星,孙挺.Cd-Pb复合污染条件下3种花卉植物的生长反应及超积累特性研究[J].环境科学学报,2006,26(12):2039-2044.
[24]陈辉蓉,吴振斌,贺锋,等.植物抗逆性研究进展[J].环境污染治理技术与设备,2001,2(3):7-13.
关键词:土壤重金属;城市绿地;污染评价;包头市
中图分类号:X53;X825文献标识码:A文章编号:0439-8114(2016)16-4124-05
DOI:10.14088/ki.issn0439-8114.2016.16.013
城市化发展和城市人口的高度集中给土壤环境带来了严重的破坏,土壤重金属污染日益严重。在工业发达地区,土壤重金属含量要比自然本底值超出几倍甚至更高。城市重金属污染以Cu、Zn、Pb、Cd和Cr最为常见,如广东韶关、湖南株洲和广西龙江均发生过严重的Cd污染事件,湖南郴州、陕西凤翔和安徽怀宁均发生过严重的Pb中毒事件,可见重金属污染问题在中国局部地区形势非常严峻。
重金属具有难降解、移动性差和易富集等特点,是土壤长期、潜在的污染物,且其可通过大气、水体或生物链直接或间接地进入人体,危害到人类的健康[1,2]。因此,土壤重金属污染逐渐备受人们的关注,有关重金属污染和治理的研究日趋深入,研究范围也越来越广。目前土壤重金属的研究方向已由传统的农林业转向城市,对象涵盖城市工业区、郊区、农田、矿区以及逐渐受到重视的城市绿地等。
包头市作为典型的重工业城市,土壤重金属污染现象较为严重。目前有关包头土壤重金属的研究主要集中在农田、郊区、工厂企业周边和矿区等,对城市绿地的研究则较少[3-8]。鉴于此,本研究以包头市典型城市绿地为研究对象,通过采集分析土壤中的Cu、Zn、Pb、Cr、Cd5种元素的含量,并使用污染指数法、地累积指数法、潜在生态危害评价法和生物毒性单位法对包头市典型城市绿地重金属污染进行评价,以期为包头市城市土壤环境的保护及土地资源的合理利用提供一定的依据。
1材料与方法
1.1样品采集
2014年10月,根据在包头市区内的实地调查,选取受人类活动影响较大的包钢公园、赛罕塔拉城中草原、南海湿地公园和八一公园作为研究对象。用竹铲采集地表0~20cm的土壤样品不少于1kg,保存于聚乙烯塑料袋中,注明采样日期、地点等。为避免土壤分布不均造成的影响,根据相应区域的地形特点,用梅花布点法或蛇形布点法随机采集4~5个样品进行混合。
1.2样品的处理及分析
土壤样品在室内自然风干后,用木棍细细碾压,剔除植物残体、碎石等杂质,混匀后,过20目和100目尼龙筛,装入聚乙烯塑料袋中保存待测[9]。
利用HCl-HNO3-HF-HClO3(优级纯)对样品进行消解,定容后采用火焰原子吸收分光光度法和石墨炉原子吸收分光光度法分别对Cu、Zn、Cr(GB/T17138-1997,HJ491-2009)和Pb、Cd(GB/T17141-1997)进行测定。试验所用Cu、Zn、Pb、Cr、Cd的标准液均购于国家物质研究中心,所用玻璃器皿和塑料器皿均用10%硝酸溶液浸泡24h,然后用超纯水洗涤;消解过程中设置空白样品,分析过程均加入国家标准土壤参比物质(GSS-1)进行质量控制。
2结果与分析
2.1土壤中重金属含量
将“1.2”中测得土壤重金属含量列于表2。与内蒙古土壤背景值相比,Cu、Pb、Cd在4个研究区域均偏高,Zn在包钢公园和赛罕塔拉城中草原偏高,Cr在4个区域均低于背景值;与全国土壤背景值比较,Cd在4个区域均偏高,Pb、Zn仅在赛罕塔拉城中草原偏高,Cu和Cr未达到背景值。综上分析,4个区域Cd污染现象普遍,其次是Pb和Cu,部分区域出现Zn污染,Cr处于清洁状态。
2.2内梅罗综合污染指数法评价结果
根据式1、式2并结合单因子和内梅罗综合指数法评价标准(表3)可知,除Cr外,包钢公园其余重金属均为轻污染;赛罕塔拉城中草原Pb和Cd为重污染,Cu和Zn为轻污染,而Cr处于清洁状态;南海湿地公园Cd处于重污染状态,Pb处于中污染状态,Cu处于轻污染状态,Zn和Cr处于清洁状态;八一公园Cd处于重污染状态,Cu和Pb处于轻污染状态,Zn和Cr处于清洁状态。在4个研究区域污染程度依次为Cd:南海湿地公园>赛罕塔拉城中草原>八一公园>包钢公园;Cu、Pb:赛罕塔拉城中草原>南海湿地公园>包钢公园>八一公园;Zn:赛罕塔拉城中草原>包钢公园>南海湿地公园>八一公园。内梅罗综合指数评价结果为:南海湿地公园>赛罕塔拉城中草原>八一公园>包钢公园,说明人为活动的影响是巨大的。
2.3地累积指数法评价结果
由“2.1”和“2.2”结论可知,包头市并未出现Cr污染,故地累积指数法仅对Cu、Zn、Pb、Cd4种重金属进行评价。根据式3和地累积指数法评价标准(表4)可知,5种重金属元素的地累积指数范围为:Igeo(Cd)0.26~2.05,Igeo(Pb)0.53~1.45,Igeo(Zn)1.11~0.04,Igeo(Cu)0.40~0.02。4个区域的土壤样品均受到不同程度的Cd污染,其中南海湿地公园为中-强污染,赛罕塔拉城中草原和八一公园为中污染,包钢公园为轻污染;Pb除在赛罕塔拉城中草原为中污染外,其他3个区域表现为轻污染或者无污染;其他两种重金属在4个区域表现为轻污染或者无污染。
2.4潜在生态危害指数评价结果
对包头市典型城市绿地土壤潜在生态危害指数及风险程度进行评价(表5)可知,Cd在赛罕塔拉城中草原和南海湿地公园处于很强的潜在生态危害,在八一公园表现为强潜在生态危害,在包钢公园处于中等潜在生态危害;而研究区域Cu、Zn、Pb、Cr均处于轻微潜在生态危害状态,其中Pb和Cu在以上评价中因含量超过背景值较多而表现出较重的污染,但因其毒性系数较小,仅为Cd的1/6,表现出较低的潜在生态危害。通过比较RI可知,除包钢公园处于轻微潜在生态危害以外,其他3个研究区域均处于中等潜在生态危害,表明包头市城市绿地已经受到很大程度的人为污染。
2.5土壤重金属生态毒性评价结果
土壤重金属含量超过最低效应(LEL,当重金属含量低于LEL时,不利于生物生长的毒性效应很少发生[14])或严重效应(SEL,重金属元素含量高于SEL时,不利于生物生长的毒性效应将频繁发生[14])阈值时,会对生态系统产生不同程度的环境风险和毒性效应[12,13]。通过与土壤重金属产生的生态阈值(表2)对比发现,评价的5种重金属元素在所有研究区域内均未超过SEL,但Cu在4个研究区域、Pb在赛罕塔拉城中草原均超过了LEL,Zn、Cd则在4个研究区域均未超过LEL。
根据土壤重金属含量与SEL的比值累积得到土壤重金属毒性单位(∑TU),见图1。由∑TU可知,4个区域的土壤毒性排序:赛罕塔拉城中草原>南海湿地公园>包钢公园>八一公园,其中4个研究对象土壤∑TU
3讨论
研究结果发现,污染严重的主要为南海湿地公园和赛罕塔拉城中草原区域,这可能是由于这两个区域作为旅游区人动密集,且南海湿地公园位于包头二里半机场附近造成其浓度较高。
不同的评价方法在计算手段和侧重点上的不同导致所得结果有所不同。尤其是毒性单位法与其他3种方法评价结果有很大不同,结果显示包头市城市绿地重金属污染较轻,无急性生物毒性。前3种评价放大都表明Cd是4个研究区域污染最严重的元素,但Cd对土壤毒性的贡献却不大,主要是由于Cd的SEL(10mg/kg)相对较大,导致其毒性值较小。宋玉芳等[17]研究也表明蔬菜对Cu的毒性效应最敏感,而对Cd的毒性效应不敏感,在大量吸收Cd的情况下仍能良好地生长。
4结论
在4个研究区域,Cd均超过土壤背景值;Pb、Cu偏高于内蒙古土壤背景值,在赛罕塔拉城中草原Pb、Zn超过全国土壤背景值;Zn在包钢公园和赛罕塔拉城中草原高于内蒙古土壤背景值;Cr均未超过土壤背景值。
单因子和地累积指数法评价结果为在4个研究区域Cd污染最为严重,其次是Pb,其他3种重金属表现为无污染或者轻污染;内梅罗污染指数显示除在包钢公园为轻污染外,其他3个区域均表现为重污染。
Cd在4个区域均为中等以上的潜在生态危害,其他4种重金属处于轻微潜在生态危害;除包钢公园整体处于轻微潜在危害外,其他3个研究区域均处于中等潜在生态危害。
土壤毒性大小为赛罕塔拉城中草原>南海湿地公园>包钢公园>八一公园,但其均表现为无毒性。
参考文献:
[1]陈满怀.土壤环境学[M].北京:科学出版社,2005.
[2]管东升,陈玉娟,阮国标.广州城市及近郊土壤重金属含量特征及人类活动的影响[J].中山大学学报(自然科学版),2001,40(4):93-96,101.
[3]张庆辉,王贵.包头市农田表层土壤重金属含量综合评价[J].安徽农业科学,2008,36(31):13527-13528,13546.
[4]张庆辉,王贵,朱晋.包头南郊污灌区农田表层土壤重金属潜在生态风险综合评价[J].西北农林科技大学学报(自然科学版),2012,40(7):181-186.
[5]唐力.包头市常见绿化树种体内与生境土壤中重金属元素含量的相关分析研究[D].呼和浩特:内蒙古农业大学,2011.
[6]郭伟,赵仁鑫,张君,等.内蒙古包头铁矿区土壤重金属污染特征及其评价[J].环境科学,2011,32(10):3100-3105.
[7]王贵,王芳.重工业城市土壤重金属含量分布特征及污染评价――以包头市为例[J].干旱区资源与环境,2008,22(8):171-173.
[8]徐清,张立新,刘素红,等.表层土壤重金属污染及潜在生态风险评价――包头市不同功能区案例研究[J].自然灾害学报,2008,17(6):7-12.
[9]HJ/T166-2004,土壤环境监测技术规范[S].
[10]郭笑笑,刘从强,朱兆洲,等.土壤重金属污染评价方法[J].生态学杂志,2011,30(5):889-896.
[11]HAKANSONL.Anecologicalriskindexforaquaticpollutioncontrol:Asedimentologicalapproach[J].WaterResearch,1980,14(8):975-1001.
[12]高磊,陈建耀,柯志庭,等.东莞石马河流域重金属污染及生态毒性的时空差异[J].环境科学,2013,34(8):3079-3087.
[13]朱爱萍,陈建耀,江涛,等.北江流域横石河――翁江沿岸土壤重金属污染特征分析[J].中国环境科学,2015,35(2):506-515.
[14]BAIJH,XIAOR,CUIBS,etal.AssessmentofheavymetalpollutioninwetlandsoilsfromtheyoungandoldreclaimedregionsinthePearlRiverEstuary,SouthChina[J].EnvironmentPollution,2011,159(3):817-824.
[15]李涛,谭雪,买亚宗,等.海浪河流域重金属污染评价[J].干旱区资源与环境,2015,29(1):112-118.
关键词:塌陷区;土壤;重金属;评价
DOI:10.16640/ki.37-1222/t.2017.02.119
1背景概况
随着经济的高速发展,各类含有重金属的污染物通过各种渠道进入土壤中,造成土壤中重金属富集。土壤中重金属会通过各种途径进入大气,水体以及动植物,进而在人体类富集,危害人类健康。随着近年来多地出现重金属污染影响人类健康事件的发生后,重金属问题日益被人们重视。
淮南矿业谢桥煤矿位于安徽省颍上县东北部,谢桥煤矿位于淮南煤田潘谢矿区西部,处于凤台、颍上两县交界,距颍上县城约20公里。并且隶属于安徽省淮南市矿业集团的谢桥矿区共划分为东一、东二、西一、西二四个采煤区,总面积大约为50km2[1]。
由于煤炭的过量开采,导致地面塌陷,从而出现采煤沉陷区这一环境问题。采煤沉陷区形成后,其巨大洼地在下雨积水后,形成了大面积的水域,并且随着时间的推移,水底逐渐长出水草并且产生微生物,由于附近居民在沉陷水域中养殖鱼类,使得之前的陆生环境完全演变为了水生环境。谢桥矿区采煤塌陷水域周边堆积的煤矸石矿山等给水体,给塌陷塘输入了大量的持续性有机污染物、重金属等[2]。随着后期煤炭开采规模的不断增加,沉陷区水域面积不断扩展,水体水质受到严重影响,渔牧业等也会受到影响,严重制约了当地经济水平和养殖业的发展[3]。
2材料与方法
2.1研究区域概况
研究区域位于安徽省淮南市谢桥矿区,谢桥沉陷水域主要分为西北沉陷水域和东南沉陷水域。所选择的土壤采样点位于沉陷水域的两侧,塌陷水域北侧依次分布5个采样点,南侧接近村庄和河流布设2个采样点(如图所示)。每个采样点采取1个表层土壤样品,土壤深度为0~20cm。
2.2样品分析测定
将土壤样品烘干研磨过0.149mm尼龙筛,称取0.5g样品置于聚四氟乙烯坩埚中,用去离子水润湿样品,然后加入10ml浓盐酸;在电热板上低温消解蒸发至剩5ml左右,加入15ml浓硝酸;接着加热使液体蒸发至粘稠状,然后加入10ml氢氟酸继续加热;坩埚中溶液快干时,加入5ml的高氯酸,继续消解至冒白烟,残渣呈现均匀的浅色取下坩埚,加入1ml(1+1)硝酸,加热溶解残渣,至溶液完全澄清,转入50ml容量瓶中,定容,过滤,上原子吸收分光光度计检测。
2.3污染评价方法
评价方法采用指数法,分别求出各重金属离子的单因子指数和区域土壤重金属的综合污染指数,对谢桥区塌陷水域各采样点的土壤中重金属污染现状进行评价分析。
(1)单因子指数法:国内外常用的评价方法之一,是用区域某污染物的实测值与土壤背景值进行相比,用比值表示该区域内此项污染物受污染的程度。
Pi=Ci/Si
式中:Pi为土壤中污染物i的环境质量指数;Ci为土壤中污染物i的实测浓度(mg/kg);Si为该区域土壤中污染物i的环境背景值(mg/kg)。
(2)综合指数法:采用内梅罗污染指数法计算其综合污染指数
式中:PN为内梅罗污染综合指数;maxPi为各项污染物中污染指数最大值;为各项污染物污染指数平均值。
根据单因子指数法和内梅罗综合污染指数法,可以将土壤重金属污染等级分为5个污染级别。
3实验结果与讨论
3.1土壤重金属检测结果
采样点土壤中重金属含量如下图所示:
由表2可知,1号采样点处各项理化性质含量均较高,主要原因可能是因为其距离河流较近,河流的汇入给塌陷区土壤带来大量的污染物质。由上面三个折线图可知,Hg、Cu、Pb、Ni、Zn和Fe在各点位土壤中分布较为均匀;Cd、Cr在各点位土壤中分布变化较大;4号采样点出Cd含量比其他点位高,可能与该处点源污染有关。谢桥区土壤中不同重金属平均污染程度为:Cd
3.2谢桥塌陷区土壤重金属污染评价
参照1997年杨晓勇等人对淮南市土壤重金属背景值的研究结果,分别计算淮南谢桥塌陷区土壤重金属单因子污染指数和综合污染指数[6]。
从单因子指数结果可知,研究地区土壤的重金属污染以Zn最为突出,7个采样点处污染以达到严重污染;4号采样点土壤中Cd也达到严重污染,5号点土壤中Cd指数也大于2,属于中度污染;并且大部分采样点中的Ni污染均达到轻度污染,其他点属未污染。所有采样点处Cr和Cu的污染指数都小于1,属于未污染,说明塌陷水域附近基本无Cr污染;Hg除了6号点超过1,其他采样点处均未污染;1号点处Pb指数超过1,其他点处土壤均未污染。总结为,谢桥塌陷区土壤重金属污染水平为Zn>Cd>Ni>Pb>Cu>Hg>Cr。
从内梅罗综合指数结果可以看出,谢桥塌陷区土壤各采样点污染程度为:TR004>TR007>TR001>TR005>TR002>TR003>TR006。各点处的综合污染指数均大于3,属于严重污染。因为内梅罗指数法中最大污染因子Zn值较大,故综合指数法夸大了重金属Zn值对土壤的污染。由于内梅罗指数法突出了污染指数最大的污染物对环境质量的影响和作用,此种计算方法对所得结果的影响很大,有些时候可能会存在人为夸大了一些因子的影响作用的情况,同时根据内梅罗指数法计算出来的综合污染指数,只能在一定程度上反映污染的程度而难以反映出污染的质变特征[1]。因此研究中,内梅罗综合指数法存在一定的局限性。
4结论
(1)谢桥区土壤中不同重金属平均污染程度为:Cd
(2)根据单因子指数法,谢桥塌陷区土壤重金属污染水平为Zn>Cd>Ni>Pb>Cu>Hg>Cr,以Zn污染较为突出。内梅罗指数法显示,谢桥塌陷区土壤各采样点污染程度为:TR004>TR007>TR001>TR005>TR002>TR003>TR006,并且内梅罗指数法在本项研究中适用性较低。
参考文献:
[1]苏桂荣.淮南潘谢矿区底泥与土壤中重金属竖向分布规律研究[D].安徽理工大学,2012.
[2]苏桂荣,姚多喜,李守勤等.基于ARCGIS的塌陷塘水质特征研究及评价――以淮南矿业集团谢桥矿为例[J].安徽理工大学学报:自然科学版,2012,32(01):39-42.
[3]淮南市环境保护局.淮南市生态环境现状调查报告[R].淮南:淮南市环境保护局出版,2001.
[4]郭伟,孙文惠,赵仁鑫等.呼和浩特市不同功能区土壤重金属污染特征及评价[J].环境科学,2013,34(04):1561-1567.
[5]土壤环境质量标准GB15618-1995.
[6]杨晓勇,孙立广,张兆峰等.淮南市土壤元素背景值与土壤环境质量评估[J].土壤学报,1997(03):344-347.
[7]方涛,刘剑彤,张晓华等.2002.河湖沉积物中酸挥发性硫化物对重金属吸附及释放的影响[J].环境科学学报,22(03):324-329.
关键词:重金属污染;土壤污染;生物修复;超量积累
作为人类发展的基础,土壤资源往往在城市化以及工业化的发展之下出现了不同程度的污染以及破坏。在这样的背景之下,我国的土壤容易受到重金属的污染而危害人类的生命安全。本文基于此,分析探讨国内外土壤重金属污染防治技术以及相关研究的发展。
1土壤重金属污染预防的发展历程
1.1预防体制
基于世界各国城市化以及工业化发展程度的日益加深,各国家普遍存在土壤重金属污染的问题。为了进一步促进各类问题的解决,世界各国加强了对于土壤重金属污染预防。关于土壤重金属污染预防的发展历程,笔者进行了相关总结,具体内容如下。
日本为了进一步促进土壤重金属污染问题的解决,颁布了《土壤环境标准》《土壤污染对策法》等法律法规,而我国自改革开放之后,逐步加强了对于环境问题的关注,并于1989年颁布《中华人民共和国环境保护法》,开始了我国土壤重金属污染问题的处理,随后中国在该法律的基础之上进行修订工作,从而实现了对于污染物排放的限制与处理。
1.2预防技术
为了进一步实现按土壤重金属污染问题的解决,各国逐步提出了清洁生产的概念。在这样的背景之下,欧共体于1979年宣布推行工业清洁生产的政策。在这样的背景之下,该区域的农业生产部门加强了对于各类先进生产技术的运用,从而实现了农业的清洁生产,规避了农业化学产品的超量使用对土壤污染。
事实上,这种从源头上降低污染源的措施,能够降低了土壤中重金属离子的引入,从而实现了土壤资源的保护。
2土壤重金属污染治理方法
目前,我国处于经济结构转型期间,土壤重金属污染的问题也较重。在这样的背景之下,为了实现我国社会的绿色、低碳、可持续发展,我国的有关部门加强了对于该类问题的解决。关于常见的土壤重金属污染治理方法,笔者进行了相关总结,具体内容如下。
2.1工程治理法
所谓的工程治理法,指的是相关单位借助物理原理以及方法进行土壤重金属污染问题的解决。在传统的工程治理过程中,工作人员多借助换土、翻土等方法进行作业,但伴随着科学技术的不断变更,我国有关部门逐步采用淋洗法、电解法、热处理等办法进行作业。
一般而言,工程治理方法在运行的过程中具有效果显著等特点,但是其因为工程复杂、工程量等问题进而导致工程成本的进一步增加。此外,该方法在运用的过程中往往因为维护措施不到位而导致部分土壤中的金属元素被迁移到其他地区,造成土壤重金属污染面积的扩大,难以真正改善土壤的重金属污染现状。
以日本富士县神通川流域的土壤重金属污染防治为例,为了降低土壤中的镉元素,相关单位加强了对于工程治理法的运用。在这一过程中,工程单位去除污染区域15cm的表土,并压实心土,并采用淋洗法对污染土壤进行清洗。
2.2农业治理
所谓的农业治理,指的是通过优化、完善传统的耕作管理制度,实现土壤重金属污染的降低。在这一过程中,工作人员需要依据重金属污染的实际状况而选择相应的植物种植,从而实现了对于土壤中重金属元素的消除。此外,在农业治理的过程中,作业人员还需要合理选择花费,从而降低土壤中的重金属元素。
学者林汲等人就通过实验分析发现了硅藻土有机肥能够实现对于Cd、Zn重金属离子的吸收,从而降低了土壤中的重金属离子。一般而言,该方法在运行的过程中普遍存在操作简便、费用低的特点,但是由于其仍旧未能够从根本上消除重金属污染,进而导致其只能够作为辅助手段进行处理。
在进行广西壮族自治^环江县废矿土壤污染治理的过程中,中科院地理所环境修复中心陈同斌率团队,借助蜈蚣草等植物开展了土壤重金属处理工作,并成功修复1280亩重金属污染农田。
2.3生物治理
生物治理方法在运行的过程中主要借助生物生命代谢活动的开展,从而降低了环境中重金属污染的浓度。从而确保部分受到污染的土壤能够恢复到初始状态。一般而言,生物治理方法在运用的过程中因为参与治理的主角不同,故而分为动物修复、微生物修复以及植物修复。
所谓的动物修复技术,指的是有关部门以及人员利用土壤中的低等动物进行土壤中重金属的吸收,从而实现了土壤中重金属含量的进一步降低。相关的研究表明,蚯蚓的出现能够实现对于硒、铜元素的吸收。事实上,该方法在推行的过程中也具有一定的问题:诸如低等动物往往会将吸收的金属元素再次释放到土壤中,从而造成了二次污染。
微生物修复技术则是利用土壤中的微生物进行各类金属元素的吸收。目前,最为常用的微生物就是――真菌。真菌在生存的过程中往往能够分泌一定量的氨基酸、有机酸等物质,从而实现了对于重金属的溶解。目前,从相关的研究分析可以发现:微生物修复技术在运行的过程中具有较为光明的前景,且能够较好的实现我国土壤重金属问题的解决。
植物修复技术的运行原理主要是在污染的区域种植特定植物,从而借助植物的生长过程实现对于重金属的吸收以及化解。目前,植物提取技术获得了相关研究人员的重视,并由此促进了土壤重金属问题的解决。现阶段,最为常用的植物有遏蓝菜、高山甘薯等。
仍旧以日本富士县神通川流域的土壤重金属污染防治为例,土壤重金属处理单位在含镉100mg/kg土壤上进行苎麻的种植,从而由此实现对于土壤中镉元素含量的降低。该地区在采取生物法治理土壤重金属污染的过程中,实现了镉元素含量降低27.6%。
3发展论述
为了进一步促进我国土壤重金属污染问题的解决,我国的有关部门需要从法律的角度出手,加强对于各类土壤重金属污染法律法规的制定。此外,我国还需要加强对于清洁生产的发展,并大力运用清洁能源。而在已经发生的土壤重金属污染问题,作业人员需要加强植物修复技术的运用。
4结束语
为了进一步促进我国土地重金属污染问题的解决,我国的有关部门以及人员需要采取科学的方式进行问题解决。本文基于此,分析探讨土壤重金属污染预防的发展历程(预防体制、预防技术),并就常见的土壤重金属污染治理方法进行分析,最后论述了我国土壤重金属污染问题解决的措施。笔者认为,随着相关措施的落实到位,我国的环境问题必将得到显著的改善。
参考文献
[1]李录久,许圣君,李光雄,张祥明,王允青,刘英,况晶.土壤重金属污染与修复技术研究进展[J].安徽
农业科学,2014(1):156-158.
[2]董文洪,杨海,令狐文生.土壤重金属污染及修复技术研究进展[J].化学试剂,2016(12):1170-1174.
[3]廖健.土壤重金属污染及其化学修复技术的研究进展[J].中国石油和化工标准与质量,2013
(24):30+28.
关键词:土壤重金属污染指数评价
中图分类号:X753文献标识码:A文章编号:1672-3791(2014)11(c)-0101-01
随着工业化和城市化的飞速发展,城市土壤环境污染日益严重,城市土壤环境问题越来越受到重视,城市工业区的土壤重金属污染较为严重[1-3]。重金属污染具有污染面积大、无法降解、易于迁移的性质。硅矿冶炼厂在炼硅过程中产生大量带有微量重金属元素的粉尘,导致周围土壤受到不同程度的重金属元素的污染。该研究对黎平工业区某硅厂周边土壤重金属污染特征进行调查分析,旨在为当地工业区土壤重金属污染治理及环境质量安全评价提供参考。
1材料和方法
1.1样品采集
黎平县工业区常年主导风向为西向,以此为依据共设计了4个采样方位,分别为垂直于主导风向的北向(N)和南向(S),下风向的东向(E)以及上风向的西向(W)。以硅厂边缘为起始点,由近及远分别采集100~300m范围内的土壤样品。用小铲取表层(0~20cm)土壤5~10个分样组成混合样,现场充分混合后采用四分法弃去多余土壤,最后保留1kg左右的土壤样品,装入备好的塑料袋,带回实验室。将取好的土样平铺在洁净牛皮纸上,捡出石块、枯枝等杂物后,让其自然风干,进一步用瓷钵磨碎研细并过100目的尼龙筛,装瓶并贴上标签,供分析测定用。
1.2实验方法
1.2.1样品前处理
称取0.2~0.3g(精确到0.0002g)过100目筛的土壤样品于150mL三角瓶中,加数滴水湿润,加王水10mL,在电热板上加热微沸至有机物剧烈反应后,再加高氯酸2mL,提高温度强火加热至冒白烟,土壤呈灰白色或淡黄色。冷却,加适量去离子水,小火加热除去高氯酸,再用1%硝酸温热溶解,溶解盐类后,仍然用1%硝酸定容至100mL容量瓶,摇匀,立即转移至聚乙烯瓶中贮存备用。
1.2.2样品测定
根据土壤样品中重金属含量确定过滤液是否稀释及稀释倍数,采用原子吸收分光光度计分别测定样品中锌、铜、铅、镉、铬的含量。具体方法采用国标GB/T17140-1997和GB/T17138-1997方法进行测定[4]。
2结果与讨论
2.1土样重金属含量测定
通过对土壤样品采用原子吸收分光光度计进行测定土壤重金属含量。采用我国《土壤环境质量标准》(GB15618-1995)二级标准作为评价依据,对各项污染物的含量限值进行污染评价[4]。质量分级标准根据中国绿色食品发展中心《绿色食品产地环境质量现状评价纲要(试行)》(1994年)的规定,土壤污染水平等级可划分为5个污染等级[4]。
2.2评价结果与分析
通过测定土壤数据,并采用单项污染指数法和内梅罗综合污染指数法两种方法[5],对调查区土壤重金属的污染状况进行了评价。由表1的单项污染指数可以看出,该硅厂周围500m受到不同程度的Cu污染,其中E100m污染最重;在100~300m范围的土壤已经开始受到Zn的不同程度污染;在100~300m范围,除了W300m外均受到Pb的不同程度污染;在100~300m范围,各土壤样本Cd的污染达到中度污染程度。
从各样点的综合污染指数可知,硅厂周围土壤都达到不同程度的污染影响,样点E100m、E300m、S100m、N100m的土壤为中度污染,其余各样点均为轻度污染。
从各元素的综合污染指数的测定及对照土壤污染水平分级标准可知,该硅厂周边土壤Cu的污染较严重,为中度污染水平;其他3种重金属均为轻度污染,表明土壤轻度污染,作物开始受到污染。4种重金属的综合污染指数顺序为Cu>Zn>Cd>Pb。
3结论与建议
(1)实验结果表明,硅厂的粉尘对其周边的土壤造成了一定的重金属污染,在距硅厂100m范围内Cu、Pb、Zn、Cd4种重金属的含量值最大,随着采样点距离的增加,重金属含量逐渐降低,其中东向污染强度最高,西向污染强度最低。南向和北向在相同距离的污染强度基本接近,由此推测该工业区常年的主导风向――西风是影响硅厂周边土壤重金属分布特征的主导因素。
(2)实验结果表明,硅厂周围土壤重金属污染状况不同。从各元素的综合污染指数看,Cu的污染较严重,为中度污染水平,其余3种元素均为轻度污染。
可见硅矿冶炼与矿业废物不合理排放已经造成硅厂周围土壤重金属污染,必须采取相应的措施防止进一步污染,同时应开展土壤重金属污染调查治理研究,通过采取生物修复技术、化学修复、物理化学修复[6]等手段净化重金属污染,使其恢复土壤生态系统的正常功能,从而减少土壤重金属污染的危害。
参考文献
[1]郑喜川,鲁安怀,高翔,等.土壤中重金属污染现状与防治方法[J].土壤与环境,2002,11(1):79-84.
[2]周启星,宋玉芳.污染土壤修复原理与方法[M].北京:科学出版社,2004:568.
[3]孙裕生,刘秀英.环境监测(修订版)[M].北京:高等教育出版社,2006:147-211.
[4]国家环境保护局.土壤环境质量标准(GB15618-1995)[S].北京:中国标准出版社,2004.
关键词:重金属;污染;防治;对策
一个地区长期进行矿山开采、加工以及利用重金属作为原料的工业发展,如不重视对重金属污染物有效防治,重金属污染物将在土壤、大气、水中逐渐累积,从而形成重金属污染。本文以南京市重金属污染的产生、排放为例,对重金属污染产生的原因进行分析,并提出治理污染的对策。
1.南京市重金属污染物产生和排放现状
南京市的重金属污染主要来源于工业;南京市13个区县中涉及重金属污染物产排的企业数为82家;重金属污染物排放主要通过废水和废气排放。
涉重废水排放总量为1075.24万吨/年,废水中各重金属污染物排放量分别为汞(Hg)0.27kg/a、镉(Cd)25.86kg/a、总铬(Cr)449.24kg/a、六价铬(Cr6+)361.14kg/a、铅(Pb)174.67kg/a、砷(As)2.81kg/a、铜(Cu)698.03kg/a、镍(Ni)96.23kg/a;涉重废气排放总量为74591.10×104m3/a,废气中各重金属污染物排放量分别为汞(Hg)0.032kg/a、镉(Cd)52.66kg/a、铬(Cr)28.85kg/a、铅(Pb)150.68kg/a、砷(As)39.43kg/a。
含重金属危险废物产生量为4956.33t/a,其中综合利用量为3123.67t/a,处置量为1706.06t/a,贮存量为126.6t/a,排放量为零。
2.南京市重金属污染的主要原因
通过对南京市涉及重金属污染的企业的调查分析,南京市重金属污染的主要原因有以下几个方面:
(1)企业规模以中小型为主,分布散乱
南京市涉重企业规模普遍偏小,分布散乱,遍布区县各处,污染物未能全部稳定达标排放,废水、废气治理措施较传统、简单,很多企业大部分企业未能进入工业园区进行统一管理,为环境监管带来了很大的不便,也为加快区域内资源共享、信息公开化建设设置了障碍。
(2)产业结构不尽合理,发展方式粗放
近年来,南京市一直致力于产业结构的调整,目前正处于产业结构的转型期,仍有一部分高投入、高耗能、高污染的企业未被淘汰,特别是一些涉重的中小型企业,工艺落后,经济基础薄弱,从经济、技术等各方面开展重金属污染治理的难度又都比较大,即使企业关闭,重金属累积的特性也会给企业所在区域带来隐患。
(3)法规制度建设滞后,环境标准不健全
目前我国还没有重金属污染治理和土壤污染治理的专门法规,南京市主要按照现行的《环境空气质量标准》和《地表水环境质量标准》中对重金属的控制要求对涉重企业进行管理;现行标准主要针对污染源达标排放提出,不涉及重金属的累积效应,关于人体健康的重金属环境标准不健全。
(4)基础工作薄弱,相关技术欠缺
由于长期对重金属污染忽视,重金属的监测、防治技术研究等基础工作较为薄弱,南京市重金属污染物整体排放情况和环境受污染程度尚未完全摸清,对重点防控企业、区域及污染隐患的危害程度掌握不够。同时重金属污染的科学研究、技术政策等还远远滞后于污染防治的迫切需求。
(5)污染隐蔽性强,治理周期长
重金属元素化学性质稳定,通过水、气、固废等多种途径可以在环境中长期积累,并通过食物链逐级富集,最终进入人体累积,使得留在人体的重金属含量成倍放大,传统的环境达标观念由于重金属的富集特性失去效用,待累积到一定程度发生污染事件时大多已经造成了极为严重的后果。一旦环境受到污染,需要比常规污染物治理更长的治理周期、更多的治理成本和更高的治理难度。
(6)环境监管能力不足,监管难度大
长期以来,南京市对重金属污染重视力度不够,各级环保管理仍主要针对常规污染物的管理,重金属污染监管措施不完善,特别是企业废气中重金属污染的管理几乎为空白;各级环保监测系统建设均主要注重常规性污染物指标监测,重金属监测能力不足,缺乏高精确度重金属检测仪器。
3、重金属污染防治对策
消除重金属污染除了对污染进行治理、对环境进行修复外,更需要对可能出现的重金属污染进行预防,从根本上解决重金属污染的问题。
(1)大力推行清洁生产审核,提升企业清洁生产水平
通过清洁生产审核,对企业的生产、产品或提供服务全过程的定性和定量分析,找出高物耗、高能耗、高污染的原因,有的放矢的提出对策、制定方案,从源头减少和防止重金属污染物的产生。对国内外现有的先进技术、工艺进行科研攻关,研究和开发具有自主知识产权、符合国内重金属行业发展要求的清洁生产核心技术和装备。
(2)严格控制企业、区域内部重金属污染物排放
严格控制区域内企业的重金属废气排放,重金属废气需进行处理,排放口达标率为100%;强化无组织废气收集、治理技术,在运输、生产的过程中减少无组织废气对环境的危害。区域严格执行《中华人民共和国固体废弃物污染环境防治法》等有关法规,实现固废的全面无害化处理。
(3)开展重金属排放企业专项整治。
要结合环保专项行动,对涉及排放重金属的企业进行全面排查和整治,彻底解决工艺落后、污染严重的铅酸蓄电池、铅冶炼等企业的环境安全隐患,严厉惩治涉及重金属的环境违法违规问题。对位于饮用水源保护区的企业一律停产关闭;对污染治理设施不正常运行、长期超标及超量排放的企业一律停产治理;对发现重大环境安全隐患的企业一律停产整改,整改不到位的坚决予以关闭。
(4)加快区域内资源共享、信息公开化建设
通过信息交换中心的企业环境行为公开披露的功能,把建设项目审批程序、重金属污染物排污费缴纳标准、资源型企业可持续发展准备金制度、达不到环保要求的重金属企业名单和来信来访处理等信息全部向社会亮相公开,主动接受广大公众和社会各界监督,督促企业保护环境。。
(5)加强政府行政干预、监督管理
加强政府行政干预,建立健全环境执法机构,加强和充实环境执法力量,制定赔偿和生态补偿等管理政策和其他约束性政策。实施环境保护目标责任制,明确环境保护目标的分管部门和分管领导,奖惩制度,并定期检查与考核目标落实情况;落实环境行政执法责任制,规范环境执法行为,加强环境执法硬件水平;建立和落实岗位责任制及其考核要求。
(6)建设区域环境风险预防和应急体系
区域必须建立统一的风险防范组织管理机构,根据《国家突发环境事件应急预案》,制定区域重金属环境事件应急预案,建立环境风险应急监测和管理系统,制定园区安全、健康与环境风险防范政策,初步建立区域安全与健康、风险防范体系。开展社会风险防范宣传教
育,提高人们的风险防范意思,要求区域内企业对紧急事故能够做出快速反应,及时采取补救措施,减少环境危害和企业的经济损失。
(7)加速已污染区域修复治理工作
对已造成重金属排放的重点区域,要重点抓好土壤污染本底调查,布设更密集的监测位点,采样分析重金属污染现状,针对各区域的污染程度和污染特征,制定详细的区域重金属污染修复治理计划,并作为重金属污染修复试点,选择成熟的修复方案,进行可行性研究,改善质量,防范风险。
(8)开展重金属污染健康危害监测与诊疗
建立和完善覆盖全市的重金属污染健康监测网络,建立重点防控区健康监测和报告制度、敏感人群定期体检制度,完善重金属污染健康危害评价、人群健康体检及诊疗和处置等工作规范。开展重金属环境与健康危害的调查研究。定期对重点防控区域内潜在风险人群有计划地进行健康检查,对可能发生的健康危害进行预警,对需要治疗的人群积极诊疗。
(9)对发生事故的区域实行限批
重点防控区内如发生涉重污染事故,需对肇事企业立即停产治理,情节严重则由地方政府责令关闭,对外环境造成的影响应进行评估,采取相应措施,减轻或消除对外环境和人群造成的影响,在事故处理结束前对区域内所有涉重项目实行区域限批。
4.总结
重金属污染是一个长期累积而形成的,必须在重金属污染产生之前进行预防,对重金属污染必须进行源头治理,从根本上解决重金属污染问题。
参考文献
[1]徐林通土壤重金属污染防治方法综述知识经济2011年第21期86;
关键词:土壤污染;典型区域;措施
中图分类号:X53
文献标识码:A文章编号:16749944(2017)12011602
1引言
土壤作为生态环境的主要组成部分,是人类赖以生存的物质基础。目前,我国土壤污染的总体形势严峻,特别在重污染企业或工业密集区、矿山及周边地区、城市和污灌^等典型区域更是土壤污染高风险区域。造成土壤污染的原因多种多样,当前新老污染物并存、有机无机污染叠加。并且,我国土壤环境的监管体系尚需完善,土壤污染治理的资金投入不足,全社会共同参与的意识不强,总之土壤污染已成为影响群众身体健康和社会稳定的重要因素。
辽宁是我国的老工业基地,是全国的重工业和原材料基地,以冶金、机械、石油化工等行业为主。本文仅以某市为例,说明典型区域土壤污染状况。该市是典型的东北重工业城市,共有工业企业2万余个,污染较重的行业有电力、黑色金属及有色金属冶炼与加工、石油及化学工业、煤炭及其他非金属矿物采选与制品等。
2土壤污染状况
2.1重金属
该市各类典型区域土壤重金属污染情况见图1。由图1可见,在七类典型区域中,金属镍的单项污染指数均排在首位,污染分担率最重,其中固体废物填埋场地、重污染企业金属镍的平均单项污染指数较高。分担率排在第二、第三位的分别是铜和锌。在这些金属元素中,金属铅和汞的单项污染指数最小。
2.2有机物
(1)有机氯农药。该市有机氯农药分布情况见图2。可以看出,虽然辽宁省禁用六六六、DDT等有机氯农药已二十多年,其检出率仍很高。但各类区域土壤中有机氯农药含量普遍较低,远低于国家土壤环境质量二级标准。在各类区域中,污灌区土壤有机氯农药含量最高,其次为工业企业遗留地及周边土壤,含量最低的是固体废物填埋场地。
图1该市典型区域土壤重金属单项污染指数
图2该市典型区域有机氯农药
(2)多氯联苯和多环芳烃。该市各类区域土壤中均未检出多氯联苯。多环芳烃的含量和分布情况见图3。
图3该市典型区域多环芳烃含量分布
该市各类典型区,重污染企业周边多环芳烃污染最重,其次为工业企业遗留地,蔬菜基地和污灌区污染最轻。有研究表明,多环芳烃主要来源于燃烧过程,该市是燃煤大市,众多重工业企业生产,加之冬季取暖燃煤锅炉的使用,通过大气扩散作用造成了对土壤的污染。
(3)石油烃总量。该市各类典型区域土壤中石油烃总量的浓度及分布情况见图4。
可见,该市各类典型区域中,石油烃总量含量最高的是污灌区,其次为工业企业遗留地和重污染企业,含量最小的是固体废物填埋场地。该市典型区域土壤中石油类污染物尚未超过限值。值得注意的是,虽然该市污灌区已停止污灌近10年,但石油类物质难于降解,土壤中仍含有一定的石油类物质。
图4该市各类典型区域石油烃总量
2.3小结
按照《土壤环境质量标准》(GB15618-1995)中的二级标准、综合污染指数评估法以及RAPANT环境风险评估等方法,得出该市典型区域土壤污染状况的总体水平。该市典型区土壤污染以多环芳烃污染为主,重金属总体情况尚可。由污染风险评估结果来看,该市典型区域土壤尚无环境风险。
3防治措施与建议
3.1治理方法
3.1.1生物修复
生物修复技术是通过植物吸收或生物降解从而去除土壤污染物质。可用于土壤生物修复的有某些植物、微生物菌剂、蚯蚓等,实践证明均取得了良好的结果。
3.1.2施用化学物质
某些化学物质可以改变土壤的理化特性,并将重金属等污染物转化为难溶物质,降低其迁移转化的风险。另外,施加有机肥料可改善土壤胶体性质,提高土壤净化能力。
3.1.3翻土和换土
深翻土或铲除表土、换无污染的客土,是土壤污染治理的有效方法。
3.2预防措施
2017年6月绿色科技第12期
陶冶:辽宁省典型区域土壤污染状况及建议措施
环境与安全
3.2.1建立完善土壤污染防治法律法规
应尽快出台《土壤污染防治法》及其配套的相关标准体系,加强对土壤污染的监督管理,通过法律手段遏制土壤污染状况加剧。
3.2.2制定专项规划,加大治污力度
要在“土十条”基础上制定完善本地区的专项规划。加大资金保障力度,吸引社会资本共同投入,全面开展土壤污染防治工作。
3.2.3强化环境监测,及时掌握污染状况
要完善土壤污染监测与评价体系,细化布设监测点位,定期采样监测,及时监控土壤环境的动态变化。
3.2.4严格执法,控制污染物排放
应加强对各类污染物排放的达标监管,强化污灌区管理,严格控制化肥农药施用,积极推广使用生物防治技术。
3.2.5加强宣传,增强公众的环境意识
要大力开展宣传教育活动,提高人民群众对土壤污染的认识,把预防土壤污染转化为全社会的共同行为。
4结语
土壤污染不仅影响我们周围的环境质量,更直接关系到农产品安全和人体健康。加强土壤染防治工作,需要全社会上下的共同努力。
参考文献:
[1]
全国土壤污染状况调查公报[J].中国环保产业,2014(11).
[2]高凤霞.土壤污染状况与防治的几点建议[J].科技资讯,2007(6).
[3]刘绮,宁晓宇,赵昕.辽宁东部山区土壤污染状况与防治对策研究[J].应用生态学报,1998(9).
【关键词】重金属污染;现状;存在问题;对策
0.引言
重金属污染指由重金属或其化合物造成的环境污染,在矿产开采、加工、冶炼等过程中不可避免的会产生一些废水、废气、含重金属废物等,如不妥善处置必将会对环境造成不利影响。随着我国工业化进程加快,近年来长期积累的重金属污染问题开始逐渐显露,从浙江湖州市血铅超标事件,陕西凤翔儿童铅超标事件,甘肃徽县群体性血铅超标事件及重金属污染“镉米”等等,可见重金属污染已影响到我们的生活环境。
1.白银市重金属污染现状
白银市重金属污染主要集中于白银区。白银区位于白银市西部,黄河上游中段,是白银市的政治、经济和文化中心,是我国重要的有色金属基地之一和甘肃省重要的能源化工基地,素有“铜城”之名。长期的矿产开采、加工以及工业化进程中积累形成的重金属污染问题十分突出。
白银市重金属污染现状调查和分析,以白银区为基本数据单元,以2007年全国污染源普查数据为基础。
1.1废水
2007年,全市含重金属工业废水产生总量为1271.6509万吨,其中白银区含重金属工业废水产生量为1168.2493万吨。全市含重金属工业废水中汞、镉、六价铬、铅、砷的产生量分别为480.41千克、164658.79千克、2437.14千克、175177.14千克和249796.93千克。2007年,全市含重金属工业废水排放量为752.0921万吨,其中其中白银区含重金属工业废水排放量为650.6993万吨。全市含重金属工业废水中汞、镉、铬、铅、砷的排放量分别为43.09千克、1997.5千克、90.44千克、6559.79千克和915.27千克。
1.2废气
2007年,全市含重金属工业废气产生总量为1523727.142万m3,其中白银区废气产生量为1200496.02万m3。全市含重金属工业废气中汞、镉、六价铬、铅、砷的产生量分别为0千克、24315.374千克、1780千克、7268067.51千克和101078.21千克。2007年,全市含重金属工业废气的排放量为1513139.38万m3,其中白银区含重金属废气排放量为1190204.08万m3。全市含重金属工业废气中汞、镉、铬、铅、砷的产生量分别为0千克、4689千克、1780千克、483216千克和2069千克。
1.3固废
2007年,全市含汞、铬、镉、铅、砷的危险废物产生量为1502686.45吨,白银区产生量为1466163.77吨。其中综合利用量为411709.82吨,白银区综合利用量为391506.72吨。处置量为39284.08吨,主要集中在白银区。贮存量为1051692.58吨,主要集中在白银区,为1035373吨。含汞、铬、镉、铅、砷的危险废物的排放量均为0。
2.存在的主要问题
白银市因矿设市,由于历史原因,缺乏统一规划,工业布局不合理,至今仍存在污染企业分散式发展。产业结构不合理,结构性污染突出,部分有色金属企业还存在资源综合利用率低、能耗高、生产工艺技术落后的问题。同时由于环境检测基础工作薄弱,重金属环境质量监测技术能力不足滞后于污染防控的需求。
3.对策分析
3.1严格分区,加大重点区域防控
目前白银市涉重企业主要集中在白银区,目前分布有涉重企业5家。为此,作为白银市重金属污染防治的重点区域白银区,其重金属污染防控工作应从以下几个方面着手进行:
①查清现状、清理遗留。白银市是一座因矿设市的城市,伴随着大规模矿产资源开发,出现了主导优势资源枯竭、环境污染严重的突出问题。因此,必须要对重金属污染现状有一个清醒的认识。目前应积极着手对现状进行认真分析,切实查清重金属污染现状,同时对区域内遗留历史问题进行一次摸底排查,在此基础上有针对性的制定污染防治工作技术路线和实施方案。
②分工明确、责任明确,落实白银区重金属污染防治工作的主体包括白银市政府、白银区政府、相关企业等三级机构。三级主体应具有明确的工作分工各负其责。其中市政府作为牵头和责任主体,负责制定和落实重金属污染防治规划、相关政策和规定,进行统筹规划和把握;区政府主要职责是协助市政府督促企业认真落实市政府制定的相关防治政策和措施。重金属防治工作的绝大部分内容会落实到相关的企业中,各相关企业应积极响应政府指定的各项污染防治政策。
③加大公众参与的力度,在白银市重点区域内应进一步加强公众参与工作,实现“群防群策”。普及相关知识,通过参观、讲座、设置展板、发放宣传单等途径让公众真正了解重金属污染的一些基本知识,重金属对人体的污染途径、防范措施等;设置联络,可在基层政府、企业、居民区等设置联络人,负责及时了解周边各阶层公众的意见、建议和要求,并对公众的意见定期进行汇总、反馈,同时对国家、政府的有关政策进行“上传下达”,使得公众意见有合理、合法的渠道及时的反映到有关部门和单位。
3.2优化结构,加大重点企业防控
针对白银市重金属污染防控的重点排污企业,做好如下几方面的工作:
①全面推行清洁生产审核。推行清洁生产审核是从源头控制污染的有效手段之一,现有企业应全部进行强制清洁生产审核,所有涉重企业清洁生产水平必须达到国内甚至国际先进水平,否则应立即进行技术改造,以提高全行业的清洁生产水平,切实从源头上防控重金属污染。
②严格执行行业准入条件。以国家的有关产业政策、准入条件等为依据,依法坚决淘汰落后工艺,加快全行业在产能、工艺技术、污染防治水平等方面的改造升级步伐和速度。通过加快产业结构调整、优化产业布局等途径,从根本上实现涉重行业的重点防控。
3.3实施严格的重金属污染源监管
①加强对涉重企业污染源稳定达标排放监管。对区内涉重企业进行加密监管。对废气排放口、车间废水排放口及企业总排口等,除按照监测计划定期进行监测外,还应采取加密监测、不定期抽查等措施增加污染物排放监督性监测和现场执法检查频次,以敦促相关企业切实保障相关污染治理设施稳定正常运行,确保污染源稳定达标排放。
②加强日常监管。应进一步加强涉重企业日常环境管理的规范化,要求做到:有专业管理机构和人员、有完整的管理制度、有完整的污染治理设施运行记录(台账)、有持续的管理人员培训教育计划、有规范的档案管理。
3.4加大重金属综合治理力度
①加强重金属环境风险应急管理能力。在认真分析总结重金属环境风险事故的发生特点、危害方式等的基础上,制定严谨的重金属污染防治应急管理体系,应包括重金属风险管理机构、重金属环境风险应急预案等。组织体系应涵盖政府、企业、员工及周边群众等层面,提高高危企业人员的污染隐患意识和环境风险意识,进一步明确责任,克服麻痹大意思想。
②积极推动深度治理,提高重金属污染物的去除效率。在现有污染源全部实现达标排放的基础上,积极引进先进的污染治理技术和工艺,通过增加污染治理设施级数、改革工艺等手段实现重金属污染物的深度处理,提高去除率、进一步削减排放量。对积极主动对污染治理设施进行深度处理技术改造的企业,政府应采取一定的鼓励性政策,如低息贷款、减免税收等。同时应对那些设施陈旧、不能稳定达标排放的重污染企业以及可能存在环境安全隐患的企业,进行限期整改,问题严重的,坚决实行停产整顿。
3.5加强重金属环境监管能力建设
①设立常规监测点位。在白银区东北涉重污染企业相对集中区域,按照相关技术规范的规定设立环境空气、土壤、地下水、地表水、农作物等常年固定监测点位,定期进行监测,并对监测结果进行统计分析,及时掌握区内重金属污染动态变化情况。为重金属环境污染防治工作提供可靠的基础依据。
②及时建立监控网络。重金属污染环境监控网络体系应当涵盖当地政府、环保监测、疾病控制中心、农林、国土等相关主管部门,形成全方位、多角度的监控体系。对相关监测资料应逐步实现共享、相互印证,以便得出最终科学合理的结论。
③积极推广人体健康普查。重金属污染重点防控区域内应适时开展较为普遍的定期人体普查制度。普查对象应涵盖企业生产一线职工、周边长住居民代表等,以便及时掌握周边人群健康受影响状况,并及时采取针对性防范措施。
【参考文献】
湖南是中国的鱼米之乡,也是有色金属之乡。统计数据显示,有色金属的无节制开发,以及治污的长期不到位,导致湖南全省受“矿毒”及重金属污染的土地大面积污染。湖南14个市、州中,有8个处在湘江流域,超过4000万人的生产、生活用水受到污染,湘江镉超标高达骇人听闻的1800倍。
湖南大米镉超标问题在业内并非新闻,镉米也远不止流毒南粤。还在2007年,南京农业大学农业资源与生态环境研究所教授潘根兴和他的研究团队,在全国华东、东北、华中、西南、华南和华北六个地区的县级以上市场中,随机采购大米样品91个,结果显示:10%左右的市售大米镉超标。
中国水稻研究所与农业部稻米及制品质量监督检验测试中心2010年的《我国稻米质量安全现状及发展对策研究》称,中国1/5的耕地受重金属污染,其中镉污染耕地涉及11省25个地区。
稻米是中国人一日三餐的主食。家禽鱼肉蔬菜受污染可以少吃甚或不吃,饭不吃却要送命。镉严重危害人体健康。欧盟将镉列为高危害有毒物质和可致癌物质管理,中国已将镉列为第一类污染物。
中国粮食卫生标准中明确规定,镉作为污染物限量指标,每千克大米中镉含量不得超过0.2毫克。今年6月1日实施的《食品安全国家标准食品中污染物限量》中,也规定了谷物、蔬菜、水果、食用菌、豆类、坚果、肉类、水产品等食品中镉含量均不得超标。可实际上,多年来在中国人的日常饮食中,已经不明不白地吞食了无数包括镉在内的重金属。
镉米危机敲响了中国耕地重金属污染的警钟。镉米背后,反映了中国土壤污染形势十分严峻,土壤正出现越来越多难以估量的危险元素。
工业“三废”以及农业化学品的长期滥用,是重金属污染土壤的元凶。消除愈演愈烈的土壤污染,除了出重招加强监管、从严治污,当务之急首先要弄清土壤污染的实情,以便更有针对性地采取对策。
正是在这个问题上,有关职能部门非但讳莫如深,拒绝公开真相,还以“国家机密”为由,搪塞公众。土地污染事关亿万百姓健康幸福,人们对此不仅有起码的知情权,而且可以据此对污染肇事者进行问责,试图以“机密”二字推卸责任,掩饰事实,简直岂有此理。
通过多目标区域地球化学调查,全面会诊土壤重金属污染现状,摸清被污染土地的污染源,查明镉、汞等重金属元素与人类污染的密切关系,进而绘制出土壤重金属“人类污染图”,这是根治镉米危机的长远之计,也是中国经济避免重走牺牲环境和人民福祉发展老路的必要举措。
已有的调查显示,长江中下游某些区域普遍存在镉、汞、铅、砷等异常。城市及其周边普遍存在汞铅异常,部分城市明显存在放射性异常。湖泊有害元素富集,土壤酸化严重。重金属元素在土壤表层明显富集并与人口密集区、工矿业区存在密切相关性。与1994-1995年采样相比,土壤重金属污染分布面积显著扩大并向东部人口密集区扩散。这样的调查越详尽周密,就越能及早采取防范措施,并为经济转型决策做到心中有数。
,由重金属污染事故特别是重大重金属污染事故引发的受害人的赔偿问题,如果不能及时解决,就可能成
为影响社会安定的一个因素。我们有必要全面考察剖析国外重金属污染责任保险制度形成的根基、发展的
脉络、变化的轨迹,结合我国的具体情况,重点对以下几个问题展开研究:
(1)重金属污染损害赔偿责任个别化与社会化有机结合的法理基础。
传统侵权行为理论偏重于加害人与受害人之间个别的损害填补关系的调整,而现代侵权行为理论和制度的
一般发展趋势是侵权损害填补责任的社会化。有学者认为,传统的自己责任、个人责任原则下的损失转移
转化为现代的社会责任原则下的损失分配、损失分散,在损害填补功能得以强化的同时,侵权行为法的制
裁、处罚和教育等传统功能均大大弱化。现代侵权行为所关心的基本问题,不是加害人之行为在道德上应
否非难,其所重视的是,加害人是否具有较佳之能力来分散损害.环境责任保险制度的建立,正是因应了
侵权责任个别化与社会化相统一的趋势。
(2)重金属污染责任保险与重金属污染责任之间的互动关系。
重金属污染责任保险以被保险人对受害人的赔偿责任的存在为基础,重金属污染责任制度本身的任何变化
,均会引发重金属污染责任保险制度的变化。同时,重金属环境责任保险对环境责任制度的扩张有促进作
用。由于加害人投有重金属环境责任保险,法官在作出判决时,会充分考虑这一因素,认定加害人的损害
赔偿责任。但是,需要明确的是,重金属环境责任保险的赔付不能够取代环境污染损害的赔偿。特别是,
已经有环境法学者提出,在重金属污染侵权损害发生的场合,应当实行惩罚性赔偿。这样,重金属环境责
任保险的保险人承担的赔偿限额以外,加害人仍然需要担负赔偿责任。
(3)重金属环境责任保险的两个原则应当重点研究。
一个是重金属污染责任保险与防灾防损相结合的原则。保险公司根据对污染危险条件、状态的评估,会采
取承保、拒保、调整保费等不同方法,从而可以强化被保险人遵守环境与安全法律法规,增强控制污染危
害的意识。同时,保险公司会与环保机构密切合作,及时发现被保险人违反合同义务的行为并要求其整改
,以预防重金属污染损害的发生。另一个是重金属污染责任保险是否适用近因原则。通常而言的环境污染
是指环境因物质和能量的介入,而导致其化学、物理、生物或者放射性等特性的改变,从而影响环境功能
及资源的有效利用或危害人体健康和人类生活的现象。由此可见,所谓的环境侵害实质上是以空气、水、
土壤、生物等环境要素为介质而导致的人身和财产损害。
(4)理清重金属污染责任保险的保险责任、除外责任。
从美国的重金属污染责任保险发展过程看,重金属污染责任保险之所以从公众责任保险中分离出来,其核
心问题就是保险人承保投保人赔偿责任风险的范围。我国保险公司的有限实践表明,这一险种能否顺利设
立、发展完善、推广销售,关键在于恰当地界定保险人的保险责任范围。所以,对保险责任范围的确定,
一方面要借助于保险的技术手段的运用,另一方面必须从民事责任的角度展开研究。保险人以被保险人故
意行为为由,拒绝承担保险责任,应当满足三个条件:①被保险人故意为特定的行为;②第三人因被保险
人的行为而受到损害;③被保险人有致使第三人受害的目的。因此,被保险人的故意行为,得否成为除外
责任的抗辩事由,实际上取决于被保险人是否有致人损害的意图或故意。
(5)重金属污染责任保险人的代位权问题。
在重金属污染损害案件中,经常遇到数个主体的重金属污染造成对他人环境权益的损害,但无法确定具体
的致害方,而由法律规定由数人共同承担赔偿责任的情况。重金属污染责任保险人为被保险人向受害人承
担赔偿责任后,可以代位被保险人向其他共同加害人要求赔偿。
(6)第三人向保险人的直接请求权及优先效力。
为保护重金属污染受害人的利益,对于重金属责任保险,应当承认第三人对保险人的直接请求权,立法应
当对直接请求权的行使提供相应的保障。直接请求权的行使,不受被保险人的其他债权人的权利行使的限
制,有必要承认第三人直接请求权的优先效力。
(7)赔偿限额。
重金属污染责任保险的条款设置应当考虑保险人的赔偿限额。一般而言,责任保险人依照保险单约定而应
当给付的赔偿限额,主要有四种形式:保险期间的累计最高赔偿限额、每次事故赔偿限额、每次事故每人
赔偿限额和被保险人的自负额。在环境责任保险中,保险公司可以根据保险标的不同的状况,结合保险业
务中风险评估技术的运用,在环境责任保单中合理地设置赔偿限额条款。
(8)重金属污染责任保险的投保、承保方式。
在我国开设环境责任保险,应当具体分析经济发展的不同阶段环境污染问题的种类、性质、污染源营运状
况、污染危险的程度及范围来决定采用强制责任保险或自愿责任保险。具体可以先对存在重金属污染重大
风险的行业,如化工、采矿处理等施行强制保险,积累经验以后逐步推开,在重金属污染风险较小的行业
推行自愿保险。
(9)重金属污染责任保险之再保险与巨灾保险证券化。
由于重金属污染损害对象的广泛性和损害后果的严重性,保险人的风险分散是其不得不考虑的问题。面对
巨灾巨损的威胁,保险人一方面通过再保险手段来转移部分危险;另一方面采用"风险金融"的管理方法,
针对巨灾型环境责任保险,通过发行保险证券的方式,从资本市场上筹集准备金,以应付巨灾巨损的发生
。该证券是一种可转化证券,证券持有人可以从巨额保险的盈利中得到较高的回报。
(10)索赔时效。
如果索赔时效太短,受害人的权利保护就无从落实。30年的时效是不够的,50年或者更长的时间应该是我
们的选择。
(11)我国重金属污染责任保险的主要险种及完善。
目前我国重金属污染责任保险所涉及的主要是对企业生产等污染造成的废渣责任险、废水渗漏污染责任险
。经济生活的发展对开设新的环境责任保险险种提出了要求,水污染责任险、土壤污染责任险应该是需要
研究的保险。
参考文献
[1]雷鸣,曾敏,郑袁明等.湖南采矿区和冶炼区水稻土重金属污染及其潜在风险评价.环境科学
学报,