360作文网

半导体光电技术范例(12篇)

栏目:报告范文

半导体光电技术范文1篇1

关键词:自由空间光通讯;激光器;光电探测器;光学滤波器

中图分类号:TN929.11

自由空间的光通信技术是一种以激光为主要的信息载体的通信技术,按不同的传输介质可以分为大气激光和星际激光通信。而且由于自由空间光拥有速率高和频带以及安装方便,还有一定的高度保密性等的特点,近年来已经受到了人们的重视,得到了很好的发展。大气激光通信因为受到大气的信道和不良环境的影响,所以一般只能是作为短距离间的通信和应急的通信手段,因为宇宙空间是在真空的状态下的,所以激光束在这个空间是受不到任何的干扰的,所以星际的激光通信就越来越受到人们的关注,许多的国家都开始在加大对星际激光通信的研究,也取得了许多好的成果。由于通信技术的不断的发展,保密通信也开始运用到现代化的战争中,以前的有线和无线技术的保密性都够强,容易泄露军事机密,而自由空间的光通信是一种保密性嫉妒强的通讯技术。本文主要就是分析自由空间光通信技术中的主要的光电器件的现状。

1自由空间光通信系统中的激光器

自由空间光通信系统中的激光器的作用就是产生激光信号并且形成一道光束发射到空中,激光器是整自由空间光通信系统中关键性的器件,自由空间光通信系统中的激光器的好坏会直接的影响到通信的可以达到的最远距离,还会对通信的质量造成很大的影响,对于整个通信系统的整体的性能也有较大的影响,所以选择好的激光器是十分的重要的。一般对于激光器的要求首先就是要有良好的输出功率,而发射出的波长要与传输的介质的低耗能区相配,其次发射的频率必须性对稳定,调节与设置比较的方便,有比较大的调制速率,最后就是体积一定要轻,重量要比较轻,耗电量要最少,使用寿命要长,运行的效率要高,还要方便集成和保养维护。当下在光通信中的最常见的激光器是CO2激光器和半导体的激光器等。

1.1CO2激光器

CO2激光器是一种辉光放电混合体性质的激光器,它的激光辐射不仅仅是可以很好的透过大气传进行远距离的输送,它光束的相干性也十分的好。CO2激光器发射光的频率十分的稳定,还可以实现单模式的运行,它可以进行连续不断的辐射,还可以进行脉冲式的辐射。CO2激光器因为对能量有良好的转换效率,而且发射出的光束的质量好,运行的功率大,又可以连续的输出以及脉冲式的输出,运行所需的费用也比较的低,所以成为用途最广泛的一种激光器。伴随着对CO2激光器的不断研发,新的技术也开始运用到其中,将会研发出体积更小和功率更强以及光束质量更好的不同类型的CO2激光器。

1.2半导体激光器

已有的半导体的激光工作物质有几十种,而且对其的研究也已经十分的成熟,比如砷化镓和掺铝砷化镓等。和其他的不同种类的激光器相比,这种半导体式的激光器是经由电子―光子的转换器,所以它的转换效率是极高的,而且半导体式的激光器可以覆盖的波段的范围也是十分的广泛的[1]。利用不同的半导体有源材料和多远化合物半导体不同的组分,可以得到更广的激光辐射波长,所以可以满足不同的需求。随着半导体激光器辐射的波长的不断的增大,半导体的使用的寿命也会增长许多,最长的使用寿命可以达到106个小时,因为半导体激光的体积和重量都很小,所以整个的半导体的激光器的制作工艺是可以和半导体的电子器件与集成电路的生产工艺进行结合的,这就给其他的器件实现单片光电子集成提供了很大的便利性。最近这几年随着对超晶格技术和器件结构研究的不断成熟,半导体激光器可以连续输出的功率增加到了120瓦,目前半导体激光器因为体积和重量小,还有对电光装换的效率极其的高,使用的寿命也长并且比较容易调节控制等一系列的优点已经成为了激光大气通信的首先激光器。半导体式的激光器有一个明显的缺点就是容易受到环境温度的影响。

2自由空间光通信系统中的光电探测器

光电探测器是激光通信系统中的核心的部件,它是利用干光信号进行接收与转换的,一般对光通信系统候中光电探测器的要求就是能够对所有的光波有高度的敏感度,要与光源进行发射的谱线相匹配,而且要有足够的频带宽度可以满足接收的光信号的带宽,在对信号接收的整个的过程中,接受的信号中所夹杂的噪声要小,而且对于外界的环境的敏感度不可以太高,也就是在外界的环境有所改变时还是要保持一定的稳定性。

Si光电二极管是光伏探测器的一种,光伏探测器在对比较微弱的快速的光信号探测方面有很好的效果,而且伴随着光电技术的不断的发展,光信号在探测的灵敏度与频率等方面都有很好的提高,Si光电二极管拥有效率高和噪声小以及反映快等优点,而且它的耗电量少并且体积小寿命长,结构也十分的简单,使用起来也很方便。虽然它的光―电转换的速度缓慢以及探测是进行调制的频率也比较的低,但是还是利大于弊的。

3自由空间光通信中的光学滤波器

自由空间中光通信中的光学滤波器可以对光源发出的光场进行接收时,可以最大限度的减少噪声。在光电通信系统中,对光学滤波器的要求有,首先是要有良好的波长,还要与激光器相适应。由于激光器的波长会随着温度的变化而改变,在对温度没有进行控制的情况下,如果外界的环境发生较大的改变,那么就会影响到激光器的波长产生改变,最终会影响对信号的有效接收。

干涉滤波器主要是运用反射的波之间的相互延长与抵消来提供选择性的滤波,这种光学滤波器可以设计成在某些波长的内部反射中,而且在波长上还可以进行相互的抵消,这种干涉滤波器可以被设计成很多的不同种类的多层的介质滤波器,经过适当的对折射率的安排,可以从衬底上反射的场所需要的波长进行一定程度的波长加强。一般的带有尖锐的干涉滤波器只是会沿着准直轴进入到滤波器的聚光的设计中,一般适度的相移都是经过材料的不同的厚度来维持的[2]。

在空间的激光通信的过程中,有许多的随机和持续性的干扰,一些太阳的辐射在进行通讯的过程中就会利用星际和其他的散射体的散射在进入接受天线的过程中,就会造成很强的噪音。在整个的通信过程中,因为光通信信道已经建立了,所以使得通信激光的额发散角变小。在这种情况下,只有通过空间的滤波,才可以使得少量的背景光可以进入到接收机内,而且进入到接收机内的通信激光是比较的强的。所以在通信机中运用纳米宽带的干涉滤光器能够很好的消除背景光的干扰。

4结束语

通过对自由空间光通信中光电子器件的现状的分析,可以看出目前在光通信中经常使用的激光器是CO2激光器,它是达到远距离的通信效果的首先设备。半导体的激光器因为其在方向性和相干性等方面比较的弱,所以是近距离之间的通信光源的首先。光电探测器是整个激光通信系统的核心部件,Si光电二极管因为光电转换速度较慢和探测调制频率较低等缺陷,所以比较的适应与小容量的光通信系统中。干涉滤光器是空间通信中十分常见的一种滤波器,它可以有效的减少背景光的干扰,可以很高的对准系统,可以接受的信号的噪比十分的高。自由空间光通信技术在将来会成为一种十分有效的通信手段。

参考文献:

[1]黄德修,刘雪峰.半导体激光器及其应用[M].北京:国防工业出版社,2009.

[2]杨祥林.光纤通信系统[M].北京:国防工业出版社,2010.

半导体光电技术范文篇2

关键词:ACLED光源;晶粒;交错矩阵式;排列

LED光源作为绿色、节能、省电、长寿命的第四代照明灯具而异军突起。目前的LED光源是低电压(VF=23.6V)、大电流(IF=2001500mA)工作的半导体器件,必须提供合适的直流才能正常发光。直流(DC)驱动LED光源发光的技术已经越来越成熟,由于我们日常照明使用的电源是高压交流(AC100~220V),所以必须使用降压的技术来获得较低的电压,常用的是变压器或开关电源降压,然后将交流(AC)变换成直流(DC),再变换成直流恒流源,才能促使LED光源发光。因此直流驱动LED光源的系统应用方案必然是:变压器+整流(或开关电源)+恒流源(图1)。LED灯具里必然要有一定的空间来安置这个模块,但是对于E27标准螺口的灯具来说空间十分有限,很难安置。无论是经由变压器+整流或是开关电源降压,系统都会有一定量的损耗,DCLED在交流、直流之间转换时约15%~30%的电力被损耗,系统效率很难做到90%以上。如果能用交流(AC)直接驱动LED光源发光,系统应用方案将大大简化,系统效率将很轻松地达到90%以上。

韩国汉城半导体公司即今天的首尔半导体早在2005年已发明可以用交流直接驱动使其发光的ACLED,其次是美国Ⅲ-NTechnology,3N技术开发MOCVD生长技术基础上的氮化镓衬底,可以增进照明和传感器的应用,并降低成本和提高生产效率。对大大小小的硅发光二极管提供6英寸生产技术。3N发明的单芯片交流发光二极管(ACLED),建立了全面的专利组合,以保护和改善技术,牢固地确立其专有的地位,是首屈一指的大规模商业化生产的交流发光二极管产品。我国台湾省“工业技术研究院”2008年也完成可产业化生产并有实际应用系统方案的ACLED产品,可直接插电于60Hz或更高频率的AC110V交流电压使其交流发光,应用于指示灯、霓虹灯、低瓦数照明灯,能有效解决现有LED无法直接在交流源下使用,造成产品应用成本较高的缺点。台湾工研院的OnChipACLED(片上ACLED)因此获得素有美国产业创新奥斯卡奖之称的2008年R&D100Award大奖。现在全世界只有美国、韩国与中国台湾有此技术,台湾工研院开发出白光、蓝光及绿光ACLED的制程技术,不仅与国际同步,也是全球领先者之一。

ACLED灯具的优点

与白炽灯、卤素灯、荧光日光灯、荧光节能灯、直流LED灯相比,ACLED灯具有更节能省电、更长寿、更有能效的高性价比。ACLED发光省去了成本不菲的AC/DC转换器和恒流源。交流LED与现有的照明灯具性能比较如表1所示。

ACLED光源超细晶粒采用特殊交错的矩阵排列

ACLED光源的重大技术突破是超细LED晶粒在封装时的特殊排列组合技术,同时利用LEDPN结的二极管特性兼作整流,半导体制程在其中扮演着相当重要的角色。ACLED通过半导体制程整合成一堆微小晶粒,采用交错的矩阵式排列工艺,并加入桥式电路至芯片设计,使AC电流可双向导通,实现发光。晶粒的排列如图2所示,左图是ACLED晶粒采用交错的矩阵式排列示意图,右小图是实际ACLED晶粒排列照片,ACLED晶粒在接上交流后通体发光,因此只需要二根引线导入交流源即能发光工作。

ACLED光源的工作原理

ACLED光源的工作原理如图3,将一堆LED微小晶粒采用交错的矩阵式排列工艺均分为五串,ACLED晶粒串组成类似一个整流桥,整流桥的两端分别联接交流源,另两端联接一串LED晶粒,交流的正半周沿蓝色通路流动,3串LED晶粒发光,负半周沿绿色通路流动,又有3串LED晶粒发光,四个桥臂上的LED晶粒轮番发光,相对桥臂上的LED晶粒同时发光,中间一串LED晶粒因共用而一直在发光。在60Hz的交流中会以每秒60次的频率轮替点亮。整流桥取得的直流是脉动直流,LED的发光也是闪动的,LED有断电余辉续光的特性,余辉可保持几十微秒,因人眼对流动光点记忆是有惰性的,结果人眼对LED光源的发光+余辉的工作模式解读是连续在发光。LED有一半时间在工作,有一半时间在休息,因而发热得以减少40%~20%。因此ACLED的使用寿命较DCLED长。

ACLED成熟的产品如首尔半导体用于AC110V的AX3201、AX3211和用于220V的AX3221、AX3231。用于AC110V功率在3.3W~4W,工作电流40mA;用于AC220V功率在3.3W-4W,工作电流20mA(图4)。LED晶粒直接邦定在铜铝基板上。引脚如图5所示。

ACLED的典型应用技术

ACLED的典型应用电原理图如图6所示,它十分简单,在ACLED两端分别串入正温度系数热敏电阻PTC,和限流电阻R1、R2、R3,接上110V或220V交流即可进入照明工作。

LED在大批量生产时,其阻抗有一定的离散性,ACLED也如此,为便于下游厂家的大批量应用,LED光源生产厂商在出厂时对批量生产的产品按阻抗分档,客户在使用时可按LED光源厂家提供的V。分档表查用相应阻值的限流电阻,如表2所示是AX3221/AX3231的V。分档与限流电阻表。

ACLED的发展

ACLED在家用电力上的方便性,不需要像DCLED一样另外得帮灯具装上一个交流转直流的转换器,不但节省了这颗转换器的成本,也避免LED光源本身还没坏,但转换器却先坏掉的窘境。交直流转换器可说是一种随着时间会老化、坏掉的电子元器件,其寿命比LED光源本身更短,故目前很多LED灯具坏掉,并不是LED光源寿命已尽,而是LED灯具使用的交直流转换器先坏掉了。ACLED还有一个特性,就是因为其工艺采用交错的矩阵式排列,是轮流点亮的,在60Hz的交流中会以每秒60次的频率轮替点亮,也让ACLED的使用寿命较DCLED长。

半导体光电技术范文1篇3

随着我国科学技术水平的不断提高,促进信息功能材料的不断推广应用,而信息功能材料逐渐向着信息存储、传输、显示、转换等功能方向转换,具有容量大、速度快、能耗低、功能多样化等优势特点。近年来,信息功能材料逐渐与光电信息技术相结合,能够促进光电信息功能材料的开发和应用。主要分析光电信息功能材料的制备方式,并论述光电信息功能材料的研究进展。

关键词:

光电信息;功能材料;研究进展

随着我国科学技术的日新月异,有力的推动着社会的发展与进步。光电信息功能材料作为新材料,能够得到充分的研发,并广泛应用于社会众多行业领域中。在光电子时代背景下,光电信息功能材料具有稳定性的良好性能,在社会众多行业领域中的应用,有着良好的发展前景。目前,我国关于光电信息功能材料的研究进展主要表现在光折变材料、半导体材料、纳米材料等方面,能够在一定程度上推动我国电子时代的发展进程。1光电信息功能材料的概述在信息时代背景下,材料领域的研究更为广泛,走在国家科研的前沿之路,为现代化科学奠定坚实的基础条件。光电信息功能材料的研究,主要以量子论为基础,相关人员对电子物理运动规律进行一系列探究,偶助于推动光电信息技术的研究和开发。基于此,光电信息功能材料得以开发和应用,主要包括光折变材料、半导体材料和纳米材料,其信息存储容量更大,且信息传输和处理速度更快,适应我国社会发展和人类进步的发展趋势,同时能够在一定程度上促进信息技术的发展[1]。

1光电信息功能材料的制备方式

目前,光电信息功能材料受功能、尺寸等因素的影响,使其制备方式可能存在差异性,因而能够适应于不同社会领域的实际需求。但是,就光电信息功能材料制备方式而言,主要表现在微波反应烧结、溅射法、PCVD等。通过合理方式对光电信息功能材料的制备,可以增强材料的性能和充分发挥其积极作用,有助于推动我国光电信息技术的快速发展[2]。

2光电信息功能材料的研究进展

2.1光电信息功能材料之光折变材料

光折变材料是光电信息功能材料之一,主要是在光的照射下,发生电荷转移,形成空间电场,最终在电光效应的影响下而产生的光电材料。光折变材料在人类社会众多领域中有着广泛的应用。现阶段,我国关于光折变材料的研究主要表现在数据存储、测量、光放大、图像处理等方面。对于光折变材料而言,主要包括无机光折变材料和有机光折变材料两种。首先,无机光折变材料主要有三类,分别为:以LiNbO3、BaTiO3为主的铁电晶体;以Bi12GeO20为主的非铁电体;以GaAs、CdTe、CdSe为主的化合物半导体。其次,有机光折变材料中,聚合物的应用更具优势,在社会众多领域中有着广泛应用,其发展空间较为广阔,能够为相关技术人员创造良好的条件。总之,随着光折变材料的研究进程加快,相关科技人员能够通过聚乙烯咔唑对图像进行识别,为后期三维体全息图存储奠定良好条件,同时促进光电信息存储的广泛应用。

2.2光电信息功能材料之半导体材料

半导体材料是导体材料和绝缘体材料之间的一种材料,能够实现电能和光能之间的相互转换。新时期,我国对半导体材料的研究相对较多,且该材料的应用范围较广。其研究进展主要表现在以下方面:首先,硅微电子技术材料。该材料是制成半导体集成电路、光伏太阳能电池的重要材料,属于我国新能源产业。随着硅材料技术的不断发展和应用,促进硅材料产业的快速发展。其次,对量子级联激光器材料的研究,该材料主要在光通信、移动通信等领域中有着广泛的应用,能够在一定程度上推动着人类工业化的发展进程。最后,对光子带隙材料的研究相对较多[3]。

2.3光电信息功能材料之纳米材料

纳米技术近年来比较热门的研究话题,而纳米光电材料是光电信息功能材料的重要组成部分。光能与电能、化学能等能源之间转换过程中,可以形成全新的纳米材料,在社会众多领域中的应用,具有一定的优势,如发展前景良好、性能优良等,尤其在光的通信、存储中有着更为深入的应用。现阶段,我国对纳米光电材料的研究相对较多,并取得良好的进展。在纳米电子器件的发展条件下,纳米光电子学得以快速发展,其研究领域主要表现在:一是关于纳米粉末在光电探测器中应用的系列研究,二者能够相互作用,且纳米粉末可以改善SOI的不良性能;二是对一维纳米材料应用的相关研究;三是对纳米硅薄膜应用的研究,其独特性质,能够充分发挥量子尺寸效应,有助于科技人员对纳米光电材料的深入研究。

3结论

随着社会的发展与进步,科学技术日新月异,造福于人类。近年来,光电信息功能材料的研究有较大进展,取得良好的成果,能够以光电为信息载体,促进人们对量子物理的深入研究。由于光电信息功能材料能够在人类社会生活众多领域中有着广泛的应用和充分发挥其积极作用。所以,相关人员有必要加强对光电信息功能材料研究进展问题的研究,能够为相关科技人员提供有力的参考依据,有助于推动光电信息功能材料的研发进程。

参考文献:

[1]王智玮,刘丽媛,陈润锋,等.基于芳香性聚酰亚胺的光电功能材料及器件研究进展[J].科学通报,2013(26):2690-2706.

[2]朱玉兰,杨艳杰,尹起范,等.四硫富瓦烯衍生物在有机光电功能材料方面的研究进展[J].有机化学,2005(10):22-30.

半导体光电技术范文

关键词:LED;专利分析;Nichia;Cree

TheU.S.patentanalysisinLEDfieldofNichiaandCree

LUOJia-xiu

(MinistryofIndustryandInformationTechnologySoftware

andIntegratedCircuitPromotionCenter,Beijing100038,China)

Abstract:BasedontheU.S.patentanalysisinLEDfieldofNichiaandCree,wefoundthattheLEDU.S.patentapplicationquantitiesofNichiaandCreebothhaveanincreasingtrendinrecentyears;theirU.S.patenttechnologiesmainlyfocusedonsemiconductordeviceswithenergybarrier,methodsorequipmentofmanufacturingorprocessing,electrodeandothercomponents,etc;butNichiafocusedmoreonlight-emittingmaterials,andCreefocusedmoreonsinglecrystalgrowth.ThispaperalsoanalyzeddifferentpatentstrategiesofNichiaandCree,andhighlightedwhatChineserelatedenterprisescouldlearnfromthem.

Keywords:LED;patentanalysis;Nichia;Cree

1引言

全球LED产业格局为美国、亚洲、欧洲三足鼎立,作为LED第一阵营内的日本日亚化学公司(Nichia)和美国科锐公司(Cree)拥有核心技术和专利,在GaN基蓝光LED、白光LED和SiC衬底等技术上处于国际领先地位。Nichia和Cree通过技术战、市场战、专利战,和其他几大LED巨头逐渐垄断了高端产品市场,已形成LED的第一梯队和专利交叉网。分析Nichia和Cree的专利布局,研究二者迥异的专利策略,对于作为LED产业新加入者的我国相关企业具有规避侵权风险、突破知识产权壁垒等重要的现实意义。

2Nichia和Cree半导体

照明领域美国专利检索结果

采用美国专利商标局,专业的专利检索工具、公司网站信息查询和网络信息检索相结合的方式,以专利申请人作为查询对象分别对Nichia和Cree及其母公司、母公司所有的子公司、曾收购的公司进行检索查询,之后人工筛选出属于半导体照明领域的专利。

截止到2010年7月,检索到Nichia和Cree半导体照明领域的美国专利分别为597件和735件。

3Nichia和Cree半导体

照明领域美国专利布局分析

根据检索结果,对Nichia和Cree半导体照明领域的美国专利布局进行分析。

3.1公司概要

Nichia

日亚化学,著名LED芯片制造商,日本公司,成立于1956年,开发出世界第一颗蓝光LED(1993年),世界第一颗纯绿光LED(1995年),与此同时,它又是以荧光粉为主要产品的规模最大的精细化工厂商。

技术优势:①第一只商品化的GaN基蓝光LED/LD;②拥有目前最好的荧光粉技术;③拥有蓝光激发黄色荧光粉技术专利;④蓝宝石衬底外延生长技术。

Cree

科锐公司建于1987年,位于美国加利福尼亚洲。研制开发并生产基于碳化硅(SiC)、氮化镓(GaN)、硅(Si)和相关化合物的材料与设备。公司的产品包括绿光、蓝光和紫外光LED,近紫外激光、射频和微波半导体器件,电源转换器件和半导体集成芯片。

技术优势:①SiC基Ⅲ族氮化物外延、芯片级封装技术;②大功率芯片和封装技术。

3.2年度申请量统计分析

图1所示的是Nichia和Cree半导体照明领域美国专利年度申请量统计。可以看出,Nichia申请专利的时间较早,始于1984年,1984年~2000年,专利年度申请量一直维持较低水平(11件以下),从2001年开始专利申请量迅速增加,2002年~2008年,专利申请量一直维持较高水平(平均年度申请73件),形成一个“平台”,其中2003年和2005年是专利申请量的两个高峰,分别为106件和93件,2009年~2010年专利申请量出现下降,可能与专利公开滞后性等因素有关,不能客观反映真实情况。总体来看,近年来Nichia半导体照明领域美国专利申请量呈稳定增加态势。Cree由北卡罗来州立大学(NorthCarolinaStateUniversity,简称NCSU)的毕业生共同创立,其早期的技术完全来自于NCSU。Cree发展历程分为三个阶段:(1)1987年~1998年为创立阶段,主要的发展在于寻找SiC合适的应用与产品;(2)1999年~2003年为第二阶段,确立以LED为主要的产品,强化核心能力,建立竞争壁垒;(3)2004年~至今为第三阶段,实现LED照明的应用,并进行照明产业的垂直整合。可以看出,Cree相当重视知识产权,早在1987年成立之初,就取得由Davis实验室的SiC研究成果专利的独家授权,之后也不断地申请积累专利。1998年~2003年Cree公司半导体照明领域美国专利申请量缓慢增加,但涨幅不大;2003年~2007年,专利申请量大幅增加,2007年专利申请量达到顶峰(169件),2008年~2010年,专利申请量出现下降。不过由于专利申请18个月后公开的限制还有部分专利申请未被公开,所以2008年~2010年的专利申请量下降不能真实反映实际情况。

由于欧盟、美国和韩国的国家半导体照明计划都是在2000年启动的,中国的“国家半导体照明计划”是在2003年启动的,所以上述申请量峰值可能与各主要国家和地区的半导体照明计划有关,即各主要国家和地区半导体照明计划的相继制定推动了Nichia和Cree相关专利加速布局。伴随着LED应用推广,Nichia和Cree的半导体照明领域美国专利申请量均在最近十年增加较为迅速,说明Nichia和Cree都很重视美国市场,积极在美国进行专利布局。

3.3高产发明人统计分析

在Nichia公司半导体照明领域美国专利(共597件)中,前10位发明人(只考虑了第一发明人)共申请专利229件,占总数的38%。其中Nakamura和Ishida是Nichia公司进行技术创新最主要的主力军,也是半导体照明领域企业应关注的发明人,其申请的专利(分别为44件和37件)占Nichia公司全部美国专利的7%和6%。Suenaga、Kamada和Shimizu是Nichia公司半导体照明领域美国专利申请的第二梯队,其申请的专利(分别为27件、24件和21件)约占Nichia公司全部专利的4.5%、4.0%和3.5%。

在Cree公司美国专利(共735件)中,前10位发明人(只考虑了第一发明人)共申请专利287件,占总数的39%。Negley、Edmond是Cree公司进行技术创新的第一梯队,其申请的专利(分别为61件和53件)占Cree公司全部美国专利的8%和7%。Slater、VANDEVEN、Loh、Roberts和Saxler是Cree公司半导体照明领域美国专利申请的第二梯队,其申请的专利分别为33件、29件、29件、28件和20件,分别约占Cree公司全部专利的4%、4%、4%、4%和3%。

3.4主要主IPC技术构成分析

Nichia公司半导体照明领域美国专利主分类号涉及H部、C部、F部、G部、B部和A部技术领域的70个IPC大组,其中26.99%集中在H01L33/00,其次为H01L21/00、H01L29/00、H01J1/00、C09K11/00、H01S5/00、H05B33/00,以上6个IPC大组占全部专利的36.73%,是Nichia研发的重点技术领域。Cree公司半导体照明领域美国专利主分类号涉及H部、F部、C部、G部、B部和A部技术领域的76个IPC大组,其中29.66%集中在H01L33/00,14.47%集中在H01L21/00,其次为H01L29/00、C30B25/00、F21V9/00、C30B23/00、H01L31/00、F21V29/00、H01L27/00,以上7个IPC大组占全部专利的26.08%,是Cree研发的重点技术领域。

表1所列的是Nichia和Cree半导体照明领域美国专利前20位IPC分布,代表了Nichia和Cree的重点技术主题。可以看出,Nichia和Cree半导体照明领域前三位IPC均为H01L33/00(至少有一个电位跃变势垒或表面势垒的专门适用于光发射的半导体器件;专门适用于制造或处理这些半导体器件或其部件的方法或设备;这些半导体器件的零部件)、H01L21/00(专门适用于制造或处理半导体或固体器件或其部件的方法或设备)、H01L29/00(专门适用于整流、放大、振荡或切换,并具有至少一个电位跃变势垒或表面势垒的半导体器件;具有至少一个电位跃变势垒或表面势垒,例如PN结耗尽层或载流子集结层的电容器或电阻器;半导体本体或其电极的零部件),但二者在技术侧重点上也存在差异,如Nichia半导体照明领域美国专利申请中排第五位的C09K11/00(发光材料,例如电致发光材料、化学发光材料)技术主题,Cree并未申请专利。而Cree半导体照明领域美国专利申请中排第六位的C30B23/00(冷凝气化物或材料挥发法的单晶生长)技术主题,也不是Nichia的专利申请重点。

3.5专利类型分析

在Nichia公司半导体照明领域597件美国专利中,发明专利为453件,外观设计专利为144件,即在其专利申请中,发明专利占大部分,达76%。在Cree公司半导体照明领域735件美国专利中,发明专利为699件,外观设计专利为36件。即在其专利申请中,发明专利占绝大部分,达95%。可以看出,Nichia和Cree半导体照明技术创新都很活跃,是知识与技术密集型企业。同时Nichia专利申请中外观设计专利的比例约占其全部专利的四分之一,说明Nichia在重视技术的同时,也很重视产品层面的专利布局。

4Nichia和Cree知识产权策略分析

4.1Nichia知识产权策略

Nichia对知识产权的态度是:专利不是商品。Nichia的专利战略部署经历了三个阶段:第一阶段(1993年~1998年),专注于事业开发,不进行专利许可;第二阶段(1998年~2003年),完善市场发展,加速技术开发,不进行专利许可;第三阶段(2003年以后)增加提供授权,可以进行专利许可。纵观Nichia的专利策略,自1993年开发出第一只商用蓝光二极管开始到2002年,Nichia一直都在通过专利布局构建完整的市场进入障碍,并强调不会为获得收入而向其它公司提供其拥有专利的授权。但技术的快速发展迫使Nichia放弃了独自发展的念头,转而趋向多边技术合作。自2002年以来,迫于与世界几大LED公司之间的诉讼压力,Nichia不得不改变策略,不再以独占市场为发展目标,而与西铁城、欧思朗、拉米尔德、丰田合成、Cree等公司达成了专利交叉许可协议或专利和解。不过Nichia主要限于与可建立技术互补关系的日本、美国以及欧洲的发光二极管相关厂商签署授权合同或交叉授权合同。

4.2Cree知识产权策略

Cree早期技术来源于北卡罗莱州立大学,随后通过并购(先后并购了Nitres、ATMI的GaN部门、LLF等)、专利独家授权(BostonUniversity)在整个产业链中建立起强大的专利组合。Cree成立初期(1987年~1998年),专利几乎集中于衬底与外延技术上;1999年~2002年,由于并购了Nitres,并开始与加州大学圣塔芭芭拉分校(UniversityofCalifornia,SantaBarbara,简称UCSB)合作,大量累积芯片技术,也开始布局一些封装专利;2003年~2010年,衬底、外延、芯片专利继续布局之外,为配合封装技术的发展,大量布局了LED封装专利。2008年Cree以一亿三百万美元并购前CEONealHunter在2005年离开后成立的LEDLightingFixture(LLF),取得了19件封装与照明的专利。

与Nichia的“专利不是商品”的专利策略完全不同,Cree将技术许可给多家LED制造商,如住友商事电子、夏普、光宝、欧思朗、Stanley电子和QT光电灯等公司。Cree公司也与日本光电元件供应商罗姆公司和住友商事建立了伙伴关系。另外,Cree还与欧司朗光电半导体达成了SiC/GaNefiwafer和衬底的协议。

由此可见,Cree的专利策略属于一种纵向的知识产权供应链条关系。一方面从上游科研机构获取独占或非独占专利许可,同时加强自身的科研投入,运用专利制度保护知识产权;又向自己的下游战略伙伴许可专利,以解决合作中的核心问题,由此形成了以知识产权为中心的战略联盟。另外,Cree还将专利作为赚取利润的商品,许可给其他厂商获取知识产权利润。

5小结与借鉴

(1)Nichia和Cree半导体照明领域美国专利申请的起始时间都较早,分别始于1984年和1987年,伴随着各主要国家和地区半导体照明计划的相继制定,申请量都是从2001年~2003年间迅速增加,近年来呈稳定增加态势。说明Nichia和Cree都很重视美国市场,积极在美国进行专利布局。对于Nichia来说,在半导体照明技术发达的美国进行专利布局是基于专利防卫性战略。

(2)Nichia技术创新最主要的主力军为Nakamura和Ishida;Cree半导体照明领域美国专利申请的第一梯队为Negley和Edmond。跟踪他们的期刊论文等,可以了解到更加丰富的技术内涵;对于竞争公司而言,也可以从中寻求合作伙伴,或进行猎头活动。

(3)Nichia和Cree半导体照明领域美国专利申请前三位IPC均为H01L33/00、H01L21/00、H01L29/00,但二者在技术侧重点上也存在差异,如Nichia半导体照明领域美国专利申请中排第五位的C09K11/00技术主题,Cree并未申请专利。而Cree半导体照明领域美国专利申请中排第六位的C30B23/00技术主题,也不是Nichia的专利申请重点。

(4)Nichia和Cree半导体照明领域美国专利大部分为发明专利,说明其技术创新都很活跃,是知识与技术密集型企业。同时Nichia专利申请中外观设计专利的比例约占其全部专利的四分之一,说明Nichia在重视技术的同时,也很重视产品层面的专利布局。

(5)来自Nichia的借鉴:从独占到授权

2002年以前,Nichia凭借1991年至2001年间取得的74件基本专利,涵盖了LED结构、外延、芯片、封装的制造全过程技术及荧光粉等相关原材料,在半导体照明领域具有绝对垄断地位,主要依靠构建专利壁垒及发起专利诉讼阻止其他厂商进入市场与其竞争,以获取高额的独占市场利益。但技术的快速发展迫使Nichia放弃了独自发展的念头,转而趋向多边技术合作。Nichia“专利不是商品”的策略并没有完全得以贯彻执行,再次验证了市场不可能被某一个体控制和垄断。

Nichia和蓝光之父――中村修二之争已为业界所熟知。1993年中村开发出被称为世纪发明的蓝光LED,1997年开发出紫外LED。但由于待遇太低,而且还被调离研究开发一线,1999年中村离开了Nichia。2000年12月,Nichia以“泄露商业秘密”的嫌疑中村,这一大大地激怒了中村,使他迅速倒向了“反日亚化学”阵营。2001年中村也对Nichia提起了反诉。Nichia和中村之争值得我国企业经营管理人员在对待技术人才的态度上引以为鉴。

6来自Cree的借鉴:利用“外援”

Cree的专利布局是分阶段进行的:首先集中在衬底、外延,接着积累芯片专利,近年大量布局封装领域。其专利布局的发展是配合技术、产业的发展,除了自主研发,更多的是通过并购等商业行为获取。Cree也善于利用专利诉讼获取市场地位,在诉讼中更善于利用“外援”(如并购或独家授权,和其他公司、研究机构合作技术开发等)。

参考文献

[1]LED巨头掀起三大战役格局愈战愈明.LED环球在线.2009.9.15

[2]全球九大LED制造厂商基本情况及技术优势简介.OFweek半导体照明网.2010.9.20

[3]梁红兵.剖析LED芯片巨头日亚:封闭保守照明市场难风光.中国电子报.2010.7.6

[4]激怒有功之臣日亚化学工业陷入危机.日经BP社.2001.5.29

[5]邱晶晶.LED厂商之竞争策略分析-以Cree公司为例.台湾政治大学科技管理研究所硕士学位论文

[6]国家新材料行业生产力促进中心国家半导体照明工程研发及产业联盟.中国半导体照明产业发展报告.机械工业出版社.2005

[7]杨飞,郭金霞,罗佳秀.LED照明重点企业专利状况分析.中国集成电路,2011.2

半导体光电技术范文篇5

关键词半导体材料量子线量子点材料光子晶体

1半导体材料的战略地位

上世纪中叶,单晶硅和半导体晶体管的发明及其硅集成电路的研制成功,导致了电子工业革命;上世纪70年代初石英光导纤维材料和GaAs激光器的发明,促进了光纤通信技术迅速发展并逐步形成了高新技术产业,使人类进入了信息时代。超晶格概念的提出及其半导体超晶格、量子阱材料的研制成功,彻底改变了光电器件的设计思想,使半导体器件的设计与制造从“杂质工程”发展到“能带工程”。纳米科学技术的发展和应用,将使人类能从原子、分子或纳米尺度水平上控制、操纵和制造功能强大的新型器件与电路,必将深刻地影响着世界的政治、经济格局和军事对抗的形式,彻底改变人们的生活方式。

2几种主要半导体材料的发展现状与趋势

2.1硅材料

从提高硅集成电路成品率,降低成本看,增大直拉硅(CZ-Si)单晶的直径和减小微缺陷的密度仍是今后CZ-Si发展的总趋势。目前直径为8英寸(200mm)的Si单晶已实现大规模工业生产,基于直径为12英寸(300mm)硅片的集成电路(IC’s)技术正处在由实验室向工业生产转变中。目前300mm,0.18μm工艺的硅ULSI生产线已经投入生产,300mm,0.13μm工艺生产线也将在2003年完成评估。18英寸重达414公斤的硅单晶和18英寸的硅园片已在实验室研制成功,直径27英寸硅单晶研制也正在积极筹划中。

从进一步提高硅IC’S的速度和集成度看,研制适合于硅深亚微米乃至纳米工艺所需的大直径硅外延片会成为硅材料发展的主流。另外,SOI材料,包括智能剥离(Smartcut)和SIMOX材料等也发展很快。目前,直径8英寸的硅外延片和SOI材料已研制成功,更大尺寸的片材也在开发中。

理论分析指出30nm左右将是硅MOS集成电路线宽的“极限”尺寸。这不仅是指量子尺寸效应对现有器件特性影响所带来的物理限制和光刻技术的限制问题,更重要的是将受硅、SiO2自身性质的限制。尽管人们正在积极寻找高K介电绝缘材料(如用Si3N4等来替代SiO2),低K介电互连材料,用Cu代替Al引线以及采用系统集成芯片技术等来提高ULSI的集成度、运算速度和功能,但硅将最终难以满足人类不断的对更大信息量需求。为此,人们除寻求基于全新原理的量子计算和DNA生物计算等之外,还把目光放在以GaAs、InP为基的化合物半导体材料,特别是二维超晶格、量子阱,一维量子线与零维量子点材料和可与硅平面工艺兼容GeSi合金材料等,这也是目前半导体材料研发的重点。

2.2GaAs和InP单晶材料

GaAs和InP与硅不同,它们都是直接带隙材料,具有电子饱和漂移速度高,耐高温,抗辐照等特点;在超高速、超高频、低功耗、低噪音器件和电路,特别在光电子器件和光电集成方面占有独特的优势。

目前,世界GaAs单晶的总年产量已超过200吨,其中以低位错密度的垂直梯度凝固法(VGF)和水平(HB)方法生长的2-3英寸的导电GaAs衬底材料为主;近年来,为满足高速移动通信的迫切需求,大直径(4,6和8英寸)的SI-GaAs发展很快。美国莫托罗拉公司正在筹建6英寸的SI-GaAs集成电路生产线。InP具有比GaAs更优越的高频性能,发展的速度更快,但研制直径3英寸以上大直径的InP单晶的关键技术尚未完全突破,价格居高不下。

GaAs和InP单晶的发展趋势是:(1).增大晶体直径,目前4英寸的SI-GaAs已用于生产,预计本世纪初的头几年直径为6英寸的SI-GaAs也将投入工业应用。(2).提高材料的电学和光学微区均匀性。(3).降低单晶的缺陷密度,特别是位错。(4).GaAs和InP单晶的VGF生长技术发展很快,很有可能成为主流技术。

2.3半导体超晶格、量子阱材料

半导体超薄层微结构材料是基于先进生长技术(MBE,MOCVD)的新一代人工构造材料。它以全新的概念改变着光电子和微电子器件的设计思想,出现了“电学和光学特性可剪裁”为特征的新范畴,是新一代固态量子器件的基础材料。

(1)Ⅲ-V族超晶格、量子阱材料。GaAIAs/GaAs,GaInAs/GaAs,AIGaInP/GaAs;GalnAs/InP,AlInAs/InP,InGaAsP/InP等GaAs、InP基晶格匹配和应变补偿材料体系已发展得相当成熟,已成功地用来制造超高速,超高频微电子器件和单片集成电路。高电子迁移率晶体管(HEMT),赝配高电子迁移率晶体管(P-HEMT)器件最好水平已达fmax=600GHz,输出功率58mW,功率增益6.4db;双异质结双极晶体管(HBT)的最高频率fmax也已高达500GHz,HEMT逻辑电路研制也发展很快。基于上述材料体系的光通信用1.3μm和1.5μm的量子阱激光器和探测器,红、黄、橙光发光二极管和红光激光器以及大功率半导体量子阱激光器已商品化;表面光发射器件和光双稳器件等也已达到或接近达到实用化水平。目前,研制高质量的1.5μm分布反馈(DFB)激光器和电吸收(EA)调制器单片集成InP基多量子阱材料和超高速驱动电路所需的低维结构材料是解决光纤通信瓶颈问题的关键,在实验室西门子公司已完成了80×40Gbps传输40km的实验。另外,用于制造准连续兆瓦级大功率激光阵列的高质量量子阱材料也受到人们的重视。

虽然常规量子阱结构端面发射激光器是目前光电子领域占统治地位的有源器件,但由于其有源区极薄(~0.01μm)端面光电灾变损伤,大电流电热烧毁和光束质量差一直是此类激光器的性能改善和功率提高的难题。采用多有源区量子级联耦合是解决此难题的有效途径之一。我国早在1999年,就研制成功980nmInGaAs带间量子级联激光器,输出功率达5W以上;2000年初,法国汤姆逊公司又报道了单个激光器准连续输出功率超过10瓦好结果。最近,我国的科研工作者又提出并开展了多有源区纵向光耦合垂直腔面发射激光器研究,这是一种具有高增益、极低阈值、高功率和高光束质量的新型激光器,在未来光通信、光互联与光电信息处理方面有着良好的应用前景。

为克服PN结半导体激光器的能隙对激光器波长范围的限制,1994年美国贝尔实验室发明了基于量子阱内子带跃迁和阱间共振隧穿的量子级联激光器,突破了半导体能隙对波长的限制。自从1994年InGaAs/InAIAs/InP量子级联激光器(QCLs)发明以来,Bell实验室等的科学家,在过去的7年多的时间里,QCLs在向大功率、高温和单膜工作等研究方面取得了显着的进展。2001年瑞士Neuchatel大学的科学家采用双声子共振和三量子阱有源区结构使波长为9.1μm的QCLs的工作温度高达312K,连续输出功率3mW。量子级联激光器的工作波长已覆盖近红外到远红外波段(3-87μm),并在光通信、超高分辨光谱、超高灵敏气体传感器、高速调制器和无线光学连接等方面显示出重要的应用前景。中科院上海微系统和信息技术研究所于1999年研制成功120K5μm和250K8μm的量子级联激光器;中科院半导体研究所于2000年又研制成功3.7μm室温准连续应变补偿量子级联激光器,使我国成为能研制这类高质量激光器材料为数不多的几个国家之一。

目前,Ⅲ-V族超晶格、量子阱材料作为超薄层微结构材料发展的主流方向,正从直径3英寸向4英寸过渡;生产型的MBE和M0CVD设备已研制成功并投入使用,每台年生产能力可高达3.75×104片4英寸或1.5×104片6英寸。英国卡迪夫的MOCVD中心,法国的PicogigaMBE基地,美国的QED公司,Motorola公司,日本的富士通,NTT,索尼等都有这种外延材料出售。生产型MBE和MOCVD设备的成熟与应用,必然促进衬底材料设备和材料评价技术的发展。

(2)硅基应变异质结构材料。硅基光、电器件集成一直是人们所追求的目标。但由于硅是间接带隙,如何提高硅基材料发光效率就成为一个亟待解决的问题。虽经多年研究,但进展缓慢。人们目前正致力于探索硅基纳米材料(纳米Si/SiO2),硅基SiGeC体系的Si1-yCy/Si1-xGex低维结构,Ge/Si量子点和量子点超晶格材料,Si/SiC量子点材料,GaN/BP/Si以及GaN/Si材料。最近,在GaN/Si上成功地研制出LED发光器件和有关纳米硅的受激放大现象的报道,使人们看到了一线希望。

另一方面,GeSi/Si应变层超晶格材料,因其在新一代移动通信上的重要应用前景,而成为目前硅基材料研究的主流。Si/GeSiMODFET和MOSFET的最高截止频率已达200GHz,HBT最高振荡频率为160GHz,噪音在10GHz下为0.9db,其性能可与GaAs器件相媲美。

尽管GaAs/Si和InP/Si是实现光电子集成理想的材料体系,但由于晶格失配和热膨胀系数等不同造成的高密度失配位错而导致器件性能退化和失效,防碍着它的使用化。最近,Motolora等公司宣称,他们在12英寸的硅衬底上,用钛酸锶作协变层(柔性层),成功的生长了器件级的GaAs外延薄膜,取得了突破性的进展。

2.4一维量子线、零维量子点半导体微结构材料

基于量子尺寸效应、量子干涉效应,量子隧穿效应和库仑阻效应以及非线性光学效应等的低维半导体材料是一种人工构造(通过能带工程实施)的新型半导体材料,是新一代微电子、光电子器件和电路的基础。它的发展与应用,极有可能触发新的技术革命。

目前低维半导体材料生长与制备主要集中在几个比较成熟的材料体系上,如GaAlAs/GaAs,In(Ga)As/GaAs,InGaAs/InAlAs/GaAs,InGaAs/InP,In(Ga)As/InAlAs/InP,InGaAsP/InAlAs/InP以及GeSi/Si等,并在纳米微电子和光电子研制方面取得了重大进展。俄罗斯约飞技术物理所MBE小组,柏林的俄德联合研制小组和中科院半导体所半导体材料科学重点实验室的MBE小组等研制成功的In(Ga)As/GaAs高功率量子点激光器,工作波长lμm左右,单管室温连续输出功率高达3.6~4W。特别应当指出的是我国上述的MBE小组,2001年通过在高功率量子点激光器的有源区材料结构中引入应力缓解层,抑制了缺陷和位错的产生,提高了量子点激光器的工作寿命,室温下连续输出功率为1W时工作寿命超过5000小时,这是大功率激光器的一个关键参数,至今未见国外报道。

在单电子晶体管和单电子存贮器及其电路的研制方面也获得了重大进展,1994年日本NTT就研制成功沟道长度为30nm纳米单电子晶体管,并在150K观察到栅控源-漏电流振荡;1997年美国又报道了可在室温工作的单电子开关器件,1998年Yauo等人采用0.25微米工艺技术实现了128Mb的单电子存贮器原型样机的制造,这是在单电子器件在高密度存贮电路的应用方面迈出的关键一步。目前,基于量子点的自适应网络计算机,单光子源和应用于量子计算的量子比特的构建等方面的研究也正在进行中。

与半导体超晶格和量子点结构的生长制备相比,高度有序的半导体量子线的制备技术难度较大。中科院半导体所半导体材料科学重点实验室的MBE小组,在继利用MBE技术和SK生长模式,成功地制备了高空间有序的InAs/InAI(Ga)As/InP的量子线和量子线超晶格结构的基础上,对InAs/InAlAs量子线超晶格的空间自对准(垂直或斜对准)的物理起因和生长控制进行了研究,取得了较大进展。

王中林教授领导的乔治亚理工大学的材料科学与工程系和化学与生物化学系的研究小组,基于无催化剂、控制生长条件的氧化物粉末的热蒸发技术,成功地合成了诸如ZnO、SnO2、In2O3和Ga2O3等一系列半导体氧化物纳米带,它们与具有圆柱对称截面的中空纳米管或纳米线不同,这些原生的纳米带呈现出高纯、结构均匀和单晶体,几乎无缺陷和位错;纳米线呈矩形截面,典型的宽度为20-300nm,宽厚比为5-10,长度可达数毫米。这种半导体氧化物纳米带是一个理想的材料体系,可以用来研究载流子维度受限的输运现象和基于它的功能器件制造。香港城市大学李述汤教授和瑞典隆德大学固体物理系纳米中心的LarsSamuelson教授领导的小组,分别在SiO2/Si和InAs/InP半导体量子线超晶格结构的生长制各方面也取得了重要进展。

低维半导体结构制备的方法很多,主要有:微结构材料生长和精细加工工艺相结合的方法,应变自组装量子线、量子点材料生长技术,图形化衬底和不同取向晶面选择生长技术,单原子操纵和加工技术,纳米结构的辐照制备技术,及其在沸石的笼子中、纳米碳管和溶液中等通过物理或化学方法制备量子点和量子线的技术等。目前发展的主要趋势是寻找原子级无损伤加工方法和纳米结构的应变自组装可控生长技术,以求获得大小、形状均匀、密度可控的无缺陷纳米结构。

2.5宽带隙半导体材料

宽带隙半导体材主要指的是金刚石,III族氮化物,碳化硅,立方氮化硼以及氧化物(ZnO等)及固溶体等,特别是SiC、GaN和金刚石薄膜等材料,因具有高热导率、高电子饱和漂移速度和大临界击穿电压等特点,成为研制高频大功率、耐高温、抗辐照半导体微电子器件和电路的理想材料;在通信、汽车、航空、航天、石油开采以及国防等方面有着广泛的应用前景。另外,III族氮化物也是很好的光电子材料,在蓝、绿光发光二极管(LED)和紫、蓝、绿光激光器(LD)以及紫外探测器等应用方面也显示了广泛的应用前景。随着1993年GaN材料的P型掺杂突破,GaN基材料成为蓝绿光发光材料的研究热点。目前,GaN基蓝绿光发光二极管己商品化,GaN基LD也有商品出售,最大输出功率为0.5W。在微电子器件研制方面,GaN基FET的最高工作频率(fmax)已达140GHz,fT=67GHz,跨导为260ms/mm;HEMT器件也相继问世,发展很快。此外,256×256GaN基紫外光电焦平面阵列探测器也已研制成功。特别值得提出的是,日本Sumitomo电子工业有限公司2000年宣称,他们采用热力学方法已研制成功2英寸GaN单晶材料,这将有力的推动蓝光激光器和GaN基电子器件的发展。另外,近年来具有反常带隙弯曲的窄禁带InAsN,InGaAsN,GaNP和GaNAsP材料的研制也受到了重视,这是因为它们在长波长光通信用高T0光源和太阳能电池等方面显示了重要应用前景。

以Cree公司为代表的体SiC单晶的研制已取得突破性进展,2英寸的4H和6HSiC单晶与外延片,以及3英寸的4HSiC单晶己有商品出售;以SiC为GaN基材料衬低的蓝绿光LED业已上市,并参于与以蓝宝石为衬低的GaN基发光器件的竟争。其他SiC相关高温器件的研制也取得了长足的进步。目前存在的主要问题是材料中的缺陷密度高,且价格昂贵。

II-VI族兰绿光材料研制在徘徊了近30年后,于1990年美国3M公司成功地解决了II-VI族的P型掺杂难点而得到迅速发展。1991年3M公司利用MBE技术率先宣布了电注入(Zn,Cd)Se/ZnSe兰光激光器在77K(495nm)脉冲输出功率100mW的消息,开始了II-VI族兰绿光半导体激光(材料)器件研制的高潮。经过多年的努力,目前ZnSe基II-VI族兰绿光激光器的寿命虽已超过1000小时,但离使用差距尚大,加之GaN基材料的迅速发展和应用,使II-VI族兰绿光材料研制步伐有所变缓。提高有源区材料的完整性,特别是要降低由非化学配比导致的点缺陷密度和进一步降低失配位错和解决欧姆接触等问题,仍是该材料体系走向实用化前必须要解决的问题。

宽带隙半导体异质结构材料往往也是典型的大失配异质结构材料,所谓大失配异质结构材料是指晶格常数、热膨胀系数或晶体的对称性等物理参数有较大差异的材料体系,如GaN/蓝宝石(Sapphire),SiC/Si和GaN/Si等。大晶格失配引发界面处大量位错和缺陷的产生,极大地影响着微结构材料的光电性能及其器件应用。如何避免和消除这一负面影响,是目前材料制备中的一个迫切要解决的关键科学问题。这个问题的解泱,必将大大地拓宽材料的可选择余地,开辟新的应用领域。

目前,除SiC单晶衬低材料,GaN基蓝光LED材料和器件已有商品出售外,大多数高温半导体材料仍处在实验室研制阶段,不少影响这类材料发展的关键问题,如GaN衬底,ZnO单晶簿膜制备,P型掺杂和欧姆电极接触,单晶金刚石薄膜生长与N型掺杂,II-VI族材料的退化机理等仍是制约这些材料实用化的关键问题,国内外虽已做了大量的研究,至今尚未取得重大突破。

3光子晶体

光子晶体是一种人工微结构材料,介电常数周期的被调制在与工作波长相比拟的尺度,来自结构单元的散射波的多重干涉形成一个光子带隙,与半导体材料的电子能隙相似,并可用类似于固态晶体中的能带论来描述三维周期介电结构中光波的传播,相应光子晶体光带隙(禁带)能量的光波模式在其中的传播是被禁止的。如果光子晶体的周期性被破坏,那么在禁带中也会引入所谓的“施主”和“受主”模,光子态密度随光子晶体维度降低而量子化。如三维受限的“受主”掺杂的光子晶体有希望制成非常高Q值的单模微腔,从而为研制高质量微腔激光器开辟新的途径。光子晶体的制备方法主要有:聚焦离子束(FIB)结合脉冲激光蒸发方法,即先用脉冲激光蒸发制备如Ag/MnO多层膜,再用FIB注入隔离形成一维或二维平面阵列光子晶体;基于功能粒子(磁性纳米颗粒Fe2O3,发光纳米颗粒CdS和介电纳米颗粒TiO2)和共轭高分子的自组装方法,可形成适用于可见光范围的三维纳米颗粒光子晶体;二维多空硅也可制作成一个理想的3-5μm和1.5μm光子带隙材料等。目前,二维光子晶体制造已取得很大进展,但三维光子晶体的研究,仍是一个具有挑战性的课题。最近,Campbell等人提出了全息光栅光刻的方法来制造三维光子晶体,取得了进展。

4量子比特构建与材料

随着微电子技术的发展,计算机芯片集成度不断增高,器件尺寸越来越小(nm尺度)并最终将受到器件工作原理和工艺技术限制,而无法满足人类对更大信息量的需求。为此,发展基于全新原理和结构的功能强大的计算机是21世纪人类面临的巨大挑战之一。1994年Shor基于量子态叠加性提出的量子并行算法并证明可轻而易举地破译目前广泛使用的公开密钥Rivest,Shamir和Adlman(RSA)体系,引起了人们的广泛重视。

所谓量子计算机是应用量子力学原理进行计算的装置,理论上讲它比传统计算机有更快的运算速度,更大信息传递量和更高信息安全保障,有可能超越目前计算机理想极限。实现量子比特构造和量子计算机的设想方案很多,其中最引人注目的是Kane最近提出的一个实现大规模量子计算的方案。其核心是利用硅纳米电子器件中磷施主核自旋进行信息编码,通过外加电场控制核自旋间相互作用实现其逻辑运算,自旋测量是由自旋极化电子电流来完成,计算机要工作在mK的低温下。

这种量子计算机的最终实现依赖于与硅平面工艺兼容的硅纳米电子技术的发展。除此之外,为了避免杂质对磷核自旋的干扰,必需使用高纯(无杂质)和不存在核自旋不等于零的硅同位素(29Si)的硅单晶;减小SiO2绝缘层的无序涨落以及如何在硅里掺入规则的磷原子阵列等是实现量子计算的关键。量子态在传输,处理和存储过程中可能因环境的耦合(干扰),而从量子叠加态演化成经典的混合态,即所谓失去相干,特别是在大规模计算中能否始终保持量子态间的相干是量子计算机走向实用化前所必需克服的难题。

5发展我国半导体材料的几点建议

鉴于我国目前的工业基础,国力和半导体材料的发展水平,提出以下发展建议供参考。

5.1硅单晶和外延材料

硅材料作为微电子技术的主导地位至少到本世纪中叶都不会改变,至今国内各大集成电路制造厂家所需的硅片基本上是依赖进口。目前国内虽已可拉制8英寸的硅单晶和小批量生产6英寸的硅外延片,然而都未形成稳定的批量生产能力,更谈不上规模生产。建议国家集中人力和财力,首先开展8英寸硅单晶实用化和6英寸硅外延片研究开发,在“十五”的后期,争取做到8英寸集成电路生产线用硅单晶材料的国产化,并有6~8英寸硅片的批量供片能力。到2010年左右,我国应有8~12英寸硅单晶、片材和8英寸硅外延片的规模生产能力;更大直径的硅单晶、片材和外延片也应及时布点研制。另外,硅多晶材料生产基地及其相配套的高纯石英、气体和化学试剂等也必需同时给以重视,只有这样,才能逐步改观我国微电子技术的落后局面,进入世界发达国家之林。

5.2GaAs及其有关化合物半导体单晶

材料发展建议

GaAs、InP等单晶材料同国外的差距主要表现在拉晶和晶片加工设备落后,没有形成生产能力。相信在国家各部委的统一组织、领导下,并争取企业介入,建立我国自己的研究、开发和生产联合体,取各家之长,分工协作,到2010年赶上世界先进水平是可能的。要达到上述目的,到“十五”末应形成以4英寸单晶为主2-3吨/年的SI-GaAs和3-5吨/年掺杂GaAs、InP单晶和开盒就用晶片的生产能力,以满足我国不断发展的微电子和光电子工业的需术。到2010年,应当实现4英寸GaAs生产线的国产化,并具有满足6英寸线的供片能力。

5.3发展超晶格、量子阱和一维、零维半导体

微结构材料的建议

(1)超晶格、量子阱材料

从目前我国国力和我们已有的基础出发,应以三基色(超高亮度红、绿和蓝光)材料和光通信材料为主攻方向,并兼顾新一代微电子器件和电路的需求,加强MBE和MOCVD两个基地的建设,引进必要的适合批量生产的工业型MBE和MOCVD设备并着重致力于GaAlAs/GaAs,InGaAlP/InGaP,GaN基蓝绿光材料,InGaAs/InP和InGaAsP/InP等材料体系的实用化研究是当务之急,争取在“十五”末,能满足国内2、3和4英寸GaAs生产线所需要的异质结材料。到2010年,每年能具备至少100万平方英寸MBE和MOCVD微电子和光电子微结构材料的生产能力。达到本世纪初的国际水平。

宽带隙高温半导体材料如SiC,GaN基微电子材料和单晶金刚石薄膜以及ZnO等材料也应择优布点,分别做好研究与开发工作。

(2)一维和零维半导体材料的发展设想。基于低维半导体微结构材料的固态纳米量子器件,目前虽然仍处在预研阶段,但极其重要,极有可能触发微电子、光电子技术新的革命。低维量子器件的制造依赖于低维结构材料生长和纳米加工技术的进步,而纳米结构材料的质量又很大程度上取决于生长和制备技术的水平。因而,集中人力、物力建设我国自己的纳米科学与技术研究发展中心就成为了成败的关键。具体目标是,“十五”末,在半导体量子线、量子点材料制备,量子器件研制和系统集成等若干个重要研究方向接近当时的国际先进水平;2010年在有实用化前景的量子点激光器,量子共振隧穿器件和单电子器件及其集成等研发方面,达到国际先进水平,并在国际该领域占有一席之地。可以预料,它的实施必将极大地增强我国的经济和国防实力。

半导体光电技术范文篇6

现阶段微电子技术在社会生产生活中具有重要的地位,软件和集成电路已经成为21世纪社会发展的基础。微电子技术作为高新技术的组成部分之一,逐渐成为电子信息技术的核心部分,深入到社会生产生活的每一个角落。电子器件的小型化和微型化是现代微电子技术的重要特征之一,其核心是系统集成(SOC)和集成电路(IC)。

1微电子技术的发展历史和现状

微电子技术一门以集成电路为核心的各种半导体器件基础上的高新电子技术,其具有工作速度快、重量轻、体积小、可靠性高等诸多优点。微电子技术是一项起源于19世纪末20世纪初的新兴技术,微电子技术的发展史从某种意义上说是集成电路的发展史。

现阶段大规模集成电力的集成度代表这微电子技术的发展水平。从集成电路在1958年被发明以来,集成电路的发展规律依然遵循着“摩尔定律”,即DRAM的储存量每隔3年就变为原来的4倍,集成电路芯片上的元件数量每18个月增加1倍(具体见表1)。微电子技术的发展历程如下,美国贝尔实验室于1947年制造出第一个晶体管,这为制造体积更小的集成电路奠定了相关的技术基础。1958年美国德克萨斯仪器公司的基比尔于研究员制造出第一个集成电路模型,并与次年该公司宣布发明了第一个集成电路。1959年美国仙童公司将微型晶体管的制造工艺—“平面工艺”经过一定的技术改进后用于集成电路的制造过程中,实现了集成电路由实验阶段向工业生产阶段的过渡。1964年相关的技术人员又研制出PMOS集成电路,大大减小了集成电路的体积,其与分立元件相比较PMOS集成电路具有可靠性高、功耗低、制造工艺简单和适于大量生产等诸多优点。到目前为止,与第一块集成电路相比集成电路的集成度的尺寸缩小了200多倍,集成度提高了550多万倍,元件成本降低了100多万倍。

在当今社会中微电子元件可以说是无处不在,每个人都在享受这微电子技术带来的方便快捷。集成电路被广泛应用于社会的各个行业,比如计算机技术、环境工程、交通医疗等领域。微电子技术对各种传统产业具有强有力的带动作用,几乎所有的传统产业与微电子技术结合,利用芯片更新技术,都可给传统产业注入活力。例如,像汽车的电子化使传统的汽车工业渗透进了微电子技术,采用微电子技术的电子引擎监控系统“汽车安全防盗系统”出租车的计价器等已得到广泛应用,现代汽车上有时甚至要有十几个到几十个微处理器又如,印刷工业采用了微电子技术排版不再采用铅字,文字的增添“删除“编排,字体的选取等都在计算机上进行,在很短的时间内就可以全部按需要设置完成,与传统印刷工业改动一字就要涉及全局已不可同日而语。

微电子技术不仅在工业制造中应用广泛,同时为商业的发展提供了巨大的方便。随着微电子技术的不断发展和计算机的应用,商场超市传统的记账方式发生了巨大的变化,账目的记录、查询、统计和存储方式发生了巨大的变化。另外,随着其他技术和微电子技术的相互融合渗透逐渐发展出新的技术。比如微电子技术和信息技术融合创造出数字地图,其通过无线电传输等方式能够为人们提供所在地区的天气状况、地理状况等所有信息,为人们的出行和野外作业等提供便利。

2微电子技术发展展望

微电子技术作为一门随着集成电路发展起来的新兴技术,其只要包括器件物理、工艺技术、材料研制、系统电路设计和封装组装等技术,简单而言主要包括材料、系统和器件三部分

2.1新型半导体材料的研制

其中,材料作为微电子技术发展的基础,对于先进材料的研制一直是微电子技术研发的重点领域。在未来的一段时间对于对新型半导体材、化合物和纳米材料的研发是重点。

新的碳化硅(SiC)材料具有禁带宽、高热导率、漂移速度快、高击穿电压等诸多优点。这些优点能够保证元件在高温高压下进行工作,同时元件的功率比较大,能够进行高频工作并且集成度高。现阶段,新型研制出的氧化硅晶体管能够在520℃下进行工作并且击穿电压能够达到800℃。另外和其他宽紧带的材料相比较,碳化硅材料能够通过热氧化的方式生成二氧化硅(SiO2)。

氮化铝(AlN)是一种举要抗辐射性能高、高击穿电压和宽禁带的材料,并且绝缘体上的硅具有低功耗、高速、抗辐射、无栓锁等诸多优点。另外,铟磷化合物也是一种新型的半导体材料,它能够很好的将数字功能和射频集中在同一个芯片上,它的运行功耗更加低,运行速度比硅型芯片的更加快。

虽然上面有很多的新型材料但是晶体管的尺寸受到热效应、磁场效应和量子效应的影响,传统的微电子发展正面临严重的瓶颈。现在对纳米尺度下新的量子现象和效应的研究成为国际上近年来的研究热点,新型纳电子器件得以迅速发展。碳纳米管(CNT)是其中的一员,它(CNT)是人工合成的天然纳米线,由于是一维输运,所以它的电子迁移率比体硅高很多,特别是可能实现弹道输运。另外由于CNT具有非常高的击穿电场(最高可达108V/cm),所以CNT中的电子漂移速度可以远远超过硅反型层中的电子,故被业界一直认为最有可能成为硅材料的未来最终继承者。因为它既可承担导线的功能,又可承担半导体(即晶体管开关)的功能,但其技术走向市场还有待成熟。如IBM公司于2002年宣布开发出性能优异的碳纳米晶体管,但同时宣称从硅电子时代过渡到碳纳米为代表的纳米电子时代可能要10年左右。在芯片集成方面的重要发展方向是SOC和SIP。

2.2工艺手段越来越先进

随着集成电路集成度的不断提高,技术人员不断缩短光刻波长并且改进透镜的孔径,通过各种手段改进光刻技术。光刻技术现阶段主要研究的是深紫外线光刻技术和沉浸光刻技术。沉浸光刻技术是指在原来的光刻设备的透镜和晶圆之间灌满水,从而达到提高孔径数值和透镜分辨率的目的。沉浸光刻技术是下一代光刻技术的主要发展方向。比如荷兰的ASXN公司采用190nm的深紫外光源并且采用沉浸透镜技术其应用极限达到30nm,很有希望突破遇到的光刻障碍。现在除了业界看好的沉浸光刻技术外,正在研究的其他新工艺也比较多。别如电子束技术、微型电子束阵列和X射线等等。

3结论

21世纪社会将成为一个信息化的社会,微电子技术在信息化社会发展中将占有及其重要的位置,同时也将成为本世纪最为活跃的科技领域。本文对微电子技术的发展状况进行了分析,同时展望了微电子技术未来的发展方向。

参看文献

[1]李冰,张立辉,李岩.微电子技术发展与展望[J].山西科技,2009,(4):53

[2]李辉,王子滨.多量子阱红外焦平面阵列研制进展[J].现代防御技术,2011,34(1):56-60

[3]张志国,杨瑞霞,李丽等.GaN基HFET中极化诱导二维电子气和电流崩塌效应[J].2013,30(7):50-55

[4]王阳元.历史机遇和我国微电子发展之路[J].中国集成电路,2010,(3):30-38

[5]肖德元,夏青,陈国庆.MOSFET器件回顾与展望[J].半导体技术,2011,31(11):805-809

[6]许居衍.半导体技术发展限制及其逻辑发展趋势[J].世界科技研究与发展,2012,21(5):15-18

[7]宋奇.浅谈微电子技术的应用[J]数字电子技术与应用,2011(3):153-155

半导体光电技术范文篇7

关键词:高效率低成本单晶N型电池应用

中图分类号:TM615文献标识码:A文章编号1672-3791(2016)07(b)-0000-00

随着人类社会不断发展和进步,人与自然的矛盾越来越突出。尤其在受到经济危机冲击的今天,能源和环境问题已成为了制约国际社会经济发展的瓶颈,也受到全社会的高度重视。哥本哈根气候会议使大家进一步深切的体会到能源短缺和环境恶化已经成为刻不容缓的问题!寻求低碳经济之路成为当今的必然趋势。太阳能电池的研究与应用越来越受到世界各国广泛的关注。太阳能电池是利用光电转换原理使太阳辐射光通过半导体转变为电能的一种器件,这种光电转换过程通常叫做“光生伏打效应”。太阳电池加工制作过程不断追求产业化,这就要求电池效率更高,目前,太阳能电池的制作有85%以上采用晶体硅作为材料,其中更多的是P型晶体硅材料电池。P型材料中多晶材料和单晶材料的加工过程多是以化学方式来处理表面,通过扩散制结、对表面进行减反射和钝化处理,再通过背场铝浆印刷和电极制作并烧结完成全部生产过程。N型材料应用相对较少,前期除了英利与荷兰ECN研究所合作开发的技术外,还有松下公司的HIT(HeterojunctionwithIntrinsicLayers)技术和Sunpower的IBC(InterdigitatedBackContacted)技术,目前实验室效率均高于20%。随着技术的不断应用,目前越来越多的人已经开始增加了对N型基材电池的关注,N型技术的优势有待进一步发展。

1N型硅材料电池的优势

半导体中有两种载流子,即价带中的空穴和导带中的电子,以电子导电为主的半导体称之为N型半导体,与之相对的,以空穴导电为主的半导体称为P型半导体。在N型半导体中,参与导电的主要是带负电的电子,这些电子来自半导体中的施主。凡掺有施主杂质或施主数量多于受主的半导体都是N型半导体。

N型硅材料作为太阳能电池的基材相对于P型材料有几大优势:第一,由于N型材料中只有微量的B掺杂,B-O对的影响会非常小。P型材料中的B-O对使得材料的少子寿命降低,从而使高效率电池的制作受到一定的限制[1];N型材料对金属杂质例如Fe不像P型材料那么敏感,这就使N型材料对加工过程有了更高的容忍度,利于高效电池的制作[2,3]。第二,由于P型基体B-O对的大量存在和电子对金属极强的复合能力,使得其光致衰减很高;而对于N型基体,由于其掺杂不同,其B-O对比P型要少的多,N型基体的少子为空穴,对金属的复合能力也比P型弱。因此其光致衰减低。总之,相对于P型材料,N型材料的电池效率易做到更高,光致衰减更低。

2N型硅电池结构及工艺过程简介

英利与荷兰ECN研究所进行合作,从2009年开始进行N型基材新工艺的尝试,其电池结构以N型基材为中心,正面制备硼扩散发射极,背面制备磷扩散的背场,正反两面均采用氮化硅钝化。其工艺流程包括:

1、碱制绒:对硅片表面处理,增加其对于光的吸收

2、磷硼共扩散:形成电池的发射极和背场

3、周边刻蚀:实现边缘的绝缘

4、化学处理:对硅片表面进行处理

5、PECVD:形成硅片正背面的减反射膜

6、金属化:制作金属电极并实现接触

通过碱制绒对表面进行处理,增加光的吸收;利用磷硼共扩散的技术,实现发射极和背场的制备过程;通过刻蚀工艺达到边缘绝缘的目的;经过化学处理对表面进行加工;采用PECVD的方法进行钝化和减反射膜层的制作;金属化工序,完成电池的电极制作并实现良好的接触。目前,英利产线上N型电池的平均效率达到20%以上。

3基于N型基材更高效电池工艺的开发

通过对N型电池基材基础工艺的研究,查找电池的损失机制,我们发现目前的N型基础工艺存在一些问题,主要是电池的正背面复合较为严重,导致电池的光电转换效率得到了制约。由于电池前表面和背表面的损失存在,影响了电池的效率提升。

针对上述情况,我们开发了新型的表面钝化机制,通过增加一层氧化铝膜层,即采用叠层钝化膜的机制,对电池前表面的损失进行补偿。

氧化铝钝化的机理是:氧化铝自身带有固定的负电荷,通过化学钝化与场效应钝化的结合,实现更好的钝化效果。化学钝化可以减少表面缺陷态密度;场效应钝化通过界面处的内建电场减少表面附近少数载流子的浓度。

针对背表面的损失,我们通过一种新型的选择性背场工艺的应用,使得背面的损失降低,从而实现了更高的电池转换效率。其来源有两个方面:一是减少自由载流子的吸收;另一个是增加背表面的钝化效果。

新工艺的工艺流程包括:

1、碱制绒:对硅片表面处理,增加其对于光的吸收

2、磷硼共扩散:形成电池的发射极和背场

3、周边刻蚀:实现边缘的绝缘

4、选择性背场制备:对背表面进行优化处理

5、化学处理:对硅片表面进行处理

6、氧化铝钝化:对前表面增强钝化

7、PECVD:形成硅片正背面的减反射膜

8、金属化:制作金属电极并实现接触

4实验过程和实验结果及电池片的表征

本实验样品是由英利(中国)能源有限公司生产的磷掺杂N型单晶A等硅片,电阻率为0.7-3.0Ω・cm,尺寸为156×156mm,厚度约为200μm的硅片300片,来自整棒的头、中、尾段三个位置,电阻率1-3欧姆*厘米,按照上述的工艺过程进行电池的制作,较单晶正常工艺增加了选择性背场工艺和氧化铝钝化工艺。经过对电池工艺流程的优化,相对于传统工艺而言,开路电压显著增高,短路电流也明显提升,填充因子变化不大。电池的光电转换效率提升了0.5%。

通过新工艺的引入,电池的开路电压达到0.654V以上,短路电流达到9.5A以上,填充因子保证80%以上,电池平均效率为20.5%。

通过对实验片和常规N型工艺的参考片进行光谱响应的对比可以看出,增加了选择性背场工艺和氧化铝工艺后的电池片,其SR曲线能明显看出电池的前表面和背表面的光谱响应增强了,这就从根本上增加了光的吸收,增强了电池的光电转换效率。

5产业化生产

新工艺的采用使得电池效率得到大幅提升,平均效率达到20.5%以上。目前的光伏市场已经慢慢向分布式转化,高效率的组件产品可以合理的利用小面积的空间,光电转换效率达到更高可以使得小型系统的空间得到更大的利用。因此,高效低成本的单晶N型电池的利用必然是今后的一大趋势。

参考文献

[1].J.Schmidtetal.26thIEEEPVSCAnaheim,p13(1997)

[2].D.MacdonaldandL.J.Geerligs,ApplPhys.Lett.92,p4061(2008)

半导体光电技术范文篇8

【关键词】光刻技术微电子设备应用分析展望

光刻技术在微电子设备中应用的关键,是光的应用能力及相关操作问题。我国光刻技术经历了较长时间的发展,从最开始的技术落后到现今的逐渐成熟,我国光刻技术在微电子设备上的应用取得了可喜的成果。今后随着微电子设备的不断发展,光刻技术仍然需要进一步改进和提升。因此,对于光刻技术在微电子设备上的应用研究是非常有意义的。

1光刻技术在微电子设备上的应用

在光刻技术和微电子设备的发展过程中,二者是共生、依存的关系,二者的发展进步都离不开对方的演变。在上世纪第一台光刻机问世后,光刻技术一直都在以惊人的速度发展,我国的光刻技术发展成果也非常显著,已经可以熟练掌握2μm、1μm、0.5μm、0.25μm等不同要求的光刻技术,并着重研发了1μm光刻技术,且取得了较大成就。当然,在光刻技术发展的过程中,微电子设备的发展也在不断进行着。世界上第一个半导体晶体管同样诞生于上个世纪,到目前为止,半导体晶体管的发展已经经历了半个多世纪的时间,加工尺寸越来越小,目前我国以及跟可以加工纳米为单位的半导体晶体管,可见微电子设备发展的迅速。微电子设备的迅速发展,和光刻技术的进步是分不开的,可以说光刻技术的技术能力对于微电子设备的研发有着最为关键的影响作用。光刻技术的应用贯穿了微电子设备生产的各个环节,随着光刻技术发展的多样化、成熟化、独立化,微电子设备的生产也显现出了同样的趋势。

随着光刻机激光功率的提升以及光刻抗腐蚀能力的增加,光刻技术的成本下降了很多,这引发了微电子设备发展的一次新的浪潮。但是我们需要重视是,光刻技术虽然已经取得了让人可喜的成就,但是其仍然存在一些固有的缺点,因而,微电子设备在依赖光刻技术的情况下,要想实现大跨越式的发展,就必须克服当前光刻技术的一些缺点,革新相关技术。这正是当前相关科研工作者在努力研究的方向,也是未来微电子设备发展的瓶颈。

2微电子设备应用光刻技术的发展展望

2.1微电子设备发展对集成电路的高要求

从微电子设备诞生以来,微电子设备的生产就对集成电路的要求较高,集成电路制造工艺的高低也直接决定了微电子设备的质量高低。在未来微电子设备的继续发展过程中,要想进一步提升质量、提升工作能力,就必须加大对集成电路的科研工作,提升集成电路的技术含量。可以预见的是,未来微电子设备对集成电路制造过程中的光刻要求会越来越高,而目前的光刻技术是难以满足那样的高要求的,因此,未来光刻技术的发展仍然会是相当长一段时间内制约集成电路和微电子设备发展的重要因素,除非有新的集成电路制造技术能够在高标准的要求下取代光刻技术。不过从目前的科研情况来看,要利用新型技术实现对目前光刻技术的合理取代仍然需要一段较长的研究时间。

2.2光刻技术发展面临的瓶颈

在经历了半个世纪左右的发展后,光刻技术已经基本成熟,其理论依据、技术能力已经到达了一定的瓶颈。从光刻技术的发展历程来看,随着光刻手段的不断更新,光刻技术能够完成的尺寸越来越小,但是这种光刻技术的发展不会让其能够完成的尺寸无限小下去,根据相关科研人员和业内人士的观点,光刻技术的完成尺寸瓶颈将会是50nm,50nm可以说是在目前的光刻原理下光刻技术所能完成的极限尺寸,小于50nm的光刻尺寸光刻技术将很难能够完成。也许当光刻技术到达50nm后,由于其工作能力无法和微电子设备的发展相匹配而会滋生出新兴的技术来取代光刻技术,但是为目前为止,人类的光刻技术还未能达到50nm,而且,在未来几年之内,人类的光刻技术也最多只能到达70nm,要达到50nm的光刻标准,光刻技术还将经历一段较长的发展历程。据科研人员描述,70nm光刻技术已经具有相当的难度,包含了多种高科技的光刻手段,而光刻技术要想超越50nm的瓶颈,必须采用跨越式的光刻技术,这将是未来人类光刻技术发展的一大目标。

2.3极紫外曝光光刻技术的应用

在未来光刻技术的发展中,极紫外曝光光刻技术的应用可能是光刻技术发展的重要方向。极紫外曝光光刻技术是人类的新发现,源于稀有金属的发现。极紫外曝光光刻技术目前的研究还远未达到成熟,但是其在光刻技术中的超强能力已经逐渐体现了出来,受到相关科研工作者的关注。研究人员表示,在未来极紫外曝光13nm将会在光刻技术中有很大的发展前景,将有可能成为人类突破50nm的光刻技术瓶颈的关键。通过目前的一系列研究同样可以发现,极紫外曝光光刻技术具有非常大的发展潜力,其应用范围较为广泛,甚至可以让微电子设备电路板的宽度小到0.05μm左右,这项技术一旦成熟,其成就将会是突破性的、历史性的,对于未来微电子设备的发展有着重要的影响作用。在目前光刻技术面临瓶颈的情况下,未来极紫外曝光光刻技术的发展将会是微电子设备科研工作者的主要研发方向。

3总结

21世纪将会是光刻技术和微电子设备发展的黄金时间,随着相关科研工作者的努力,相信下一代光刻技术一定会在未来某个时间点诞生,突破目前的光刻技术瓶颈,迎来光刻技术发展的新阶段。当然,光刻技术和微电子设备之间的相互依赖关系仍然将会在未来一段时间内保持下去,光刻技术的进步仍然将深刻地影响微电子设备的发展。

作者:任杰中国空空导弹研究院河南省洛阳市471000

参考文献

[1]赵清泽.表面等离子体纳米光刻技术探究[J].科技致富向导,2010(33).

半导体光电技术范文篇9

关键词半导体材料量子线量子点材料光子晶体

1半导体材料的战略地位

上世纪中叶,单晶硅和半导体晶体管的发明及其硅集成电路的研制成功,导致了电子工业革命;上世纪70年代初石英光导纤维材料和GaAs激光器的发明,促进了光纤通信技术迅速发展并逐步形成了高新技术产业,使人类进入了信息时代。超晶格概念的提出及其半导体超晶格、量子阱材料的研制成功,彻底改变了光电器件的设计思想,使半导体器件的设计与制造从“杂质工程”发展到“能带工程”。纳米科学技术的发展和应用,将使人类能从原子、分子或纳米尺度水平上控制、操纵和制造功能强大的新型器件与电路,必将深刻地影响着世界的政治、经济格局和军事对抗的形式,彻底改变人们的生活方式。

2几种主要半导体材料的发展现状与趋势

2.1硅材料

从提高硅集成电路成品率,降低成本看,增大直拉硅(CZ-Si)单晶的直径和减小微缺陷的密度仍是今后CZ-Si发展的总趋势。目前直径为8英寸(200mm)的Si单晶已实现大规模工业生产,基于直径为12英寸(300mm)硅片的集成电路(IC‘s)技术正处在由实验室向工业生产转变中。目前300mm,0.18μm工艺的硅ULSI生产线已经投入生产,300mm,0.13μm工艺生产线也将在2003年完成评估。18英寸重达414公斤的硅单晶和18英寸的硅园片已在实验室研制成功,直径27英寸硅单晶研制也正在积极筹划中。

从进一步提高硅IC‘S的速度和集成度看,研制适合于硅深亚微米乃至纳米工艺所需的大直径硅外延片会成为硅材料发展的主流。另外,SOI材料,包括智能剥离(Smartcut)和SIMOX材料等也发展很快。目前,直径8英寸的硅外延片和SOI材料已研制成功,更大尺寸的片材也在开发中。

理论分析指出30nm左右将是硅MOS集成电路线宽的“极限”尺寸。这不仅是指量子尺寸效应对现有器件特性影响所带来的物理限制和光刻技术的限制问题,更重要的是将受硅、SiO2自身性质的限制。尽管人们正在积极寻找高K介电绝缘材料(如用Si3N4等来替代SiO2),低K介电互连材料,用Cu代替Al引线以及采用系统集成芯片技术等来提高ULSI的集成度、运算速度和功能,但硅将最终难以满足人类不断的对更大信息量需求。为此,人们除寻求基于全新原理的量子计算和DNA生物计算等之外,还把目光放在以GaAs、InP为基的化合物半导体材料,特别是二维超晶格、量子阱,一维量子线与零维量子点材料和可与硅平面工艺兼容GeSi合金材料等,这也是目前半导体材料研发的重点。

2.2GaAs和InP单晶材料

GaAs和InP与硅不同,它们都是直接带隙材料,具有电子饱和漂移速度高,耐高温,抗辐照等特点;在超高速、超高频、低功耗、低噪音器件和电路,特别在光电子器件和光电集成方面占有独特的优势。

目前,世界GaAs单晶的总年产量已超过200吨,其中以低位错密度的垂直梯度凝固法(VGF)和水平(HB)方法生长的2-3英寸的导电GaAs衬底材料为主;近年来,为满足高速移动通信的迫切需求,大直径(4,6和8英寸)的SI-GaAs发展很快。美国莫托罗拉公司正在筹建6英寸的SI-GaAs集成电路生产线。InP具有比GaAs更优越的高频性能,发展的速度更快,但研制直径3英寸以上大直径的InP单晶的关键技术尚未完全突破,价格居高不下。

GaAs和InP单晶的发展趋势是:

(1)。增大晶体直径,目前4英寸的SI-GaAs已用于生产,预计本世纪初的头几年直径为6英寸的SI-GaAs也将投入工业应用。

(2)。提高材料的电学和光学微区均匀性。

(3)。降低单晶的缺陷密度,特别是位错。

(4)。GaAs和InP单晶的VGF生长技术发展很快,很有可能成为主流技术。

2.3半导体超晶格、量子阱材料

半导体超薄层微结构材料是基于先进生长技术(MBE,MOCVD)的新一代人工构造材料。它以全新的概念改变着光电子和微电子器件的设计思想,出现了“电学和光学特性可剪裁”为特征的新范畴,是新一代固态量子器件的基础材料。

(1)Ⅲ-V族超晶格、量子阱材料。

GaAIAs/GaAs,GaInAs/GaAs,AIGaInP/GaAs;GalnAs/InP,AlInAs/InP,InGaAsP/InP等GaAs、InP基晶格匹配和应变补偿材料体系已发展得相当成熟,已成功地用来制造超高速,超高频微电子器件和单片集成电路。高电子迁移率晶体管(HEMT),赝配高电子迁移率晶体管(P-HEMT)器件最好水平已达fmax=600GHz,输出功率58mW,功率增益6.4db;双异质结双极晶体管(HBT)的最高频率fmax也已高达500GHz,HEMT逻辑电路研制也发展很快。基于上述材料体系的光通信用1.3μm和1.5μm的量子阱激光器和探测器,红、黄、橙光发光二极管和红光激光器以及大功率半导体量子阱激光器已商品化;表面光发射器件和光双稳器件等也已达到或接近达到实用化水平。目前,研制高质量的1.5μm分布反馈(DFB)激光器和电吸收(EA)调制器单片集成InP基多量子阱材料和超高速驱动电路所需的低维结构材料是解决光纤通信瓶颈问题的关键,在实验室西门子公司已完成了80×40Gbps传输40km的实验。另外,用于制造准连续兆瓦级大功率激光阵列的高质量量子阱材料也受到人们的重视。

虽然常规量子阱结构端面发射激光器是目前光电子领域占统治地位的有源器件,但由于其有源区极薄(~0.01μm)端面光电灾变损伤,大电流电热烧毁和光束质量差一直是此类激光器的性能改善和功率提高的难题。采用多有源区量子级联耦合是解决此难题的有效途径之一。我国早在1999年,就研制成功980nmInGaAs带间量子级联激光器,输出功率达5W以上;2000年初,法国汤姆逊公司又报道了单个激光器准连续输出功率超过10瓦好结果。最近,我国的科研工作者又提出并开展了多有源区纵向光耦合垂直腔面发射激光器研究,这是一种具有高增益、极低阈值、高功率和高光束质量的新型激光器,在未来光通信、光互联与光电信息处理方面有着良好的应用前景。

为克服PN结半导体激光器的能隙对激光器波长范围的限制,1994年美国贝尔实验室发明了基于量子阱内子带跃迁和阱间共振隧穿的量子级联激光器,突破了半导体能隙对波长的限制。自从1994年InGaAs/InAIAs/InP量子级联激光器(QCLs)发明以来,Bell实验室等的科学家,在过去的7年多的时间里,QCLs在向大功率、高温和单膜工作等研究方面取得了显着的进展。2001年瑞士Neuchatel大学的科学家采用双声子共振和三量子阱有源区结构使波长为9.1μm的QCLs的工作温度高达312K,连续输出功率3mW.量子级联激光器的工作波长已覆盖近红外到远红外波段(3-87μm),并在光通信、超高分辨光谱、超高灵敏气体传感器、高速调制器和无线光学连接等方面显示出重要的应用前景。中科院上海微系统和信息技术研究所于1999年研制成功120K5μm和250K8μm的量子级联激光器;中科院半导体研究所于2000年又研制成功3.7μm室温准连续应变补偿量子级联激光器,使我国成为能研制这类高质量激光器材料为数不多的几个国家之一。

目前,Ⅲ-V族超晶格、量子阱材料作为超薄层微结构材料发展的主流方向,正从直径3英寸向4英寸过渡;生产型的MBE和M0CVD设备已研制成功并投入使用,每台年生产能力可高达3.75×104片4英寸或1.5×104片6英寸。英国卡迪夫的MOCVD中心,法国的PicogigaMBE基地,美国的QED公司,Motorola公司,日本的富士通,NTT,索尼等都有这种外延材料出售。生产型MBE和MOCVD设备的成熟与应用,必然促进衬底材料设备和材料评价技术的发展。

(2)硅基应变异质结构材料。

硅基光、电器件集成一直是人们所追求的目标。但由于硅是间接带隙,如何提高硅基材料发光效率就成为一个亟待解决的问题。虽经多年研究,但进展缓慢。人们目前正致力于探索硅基纳米材料(纳米Si/SiO2),硅基SiGeC体系的Si1-yCy/Si1-xGex低维结构,Ge/Si量子点和量子点超晶格材料,Si/SiC量子点材料,GaN/BP/Si以及GaN/Si材料。最近,在GaN/Si上成功地研制出LED发光器件和有关纳米硅的受激放大现象的报道,使人们看到了一线希望。

另一方面,GeSi/Si应变层超晶格材料,因其在新一代移动通信上的重要应用前景,而成为目前硅基材料研究的主流。Si/GeSiMODFET和MOSFET的最高截止频率已达200GHz,HBT最高振荡频率为160GHz,噪音在10GHz下为0.9db,其性能可与GaAs器件相媲美。

尽管GaAs/Si和InP/Si是实现光电子集成理想的材料体系,但由于晶格失配和热膨胀系数等不同造成的高密度失配位错而导致器件性能退化和失效,防碍着它的使用化。最近,Motolora等公司宣称,他们在12英寸的硅衬底上,用钛酸锶作协变层(柔性层),成功的生长了器件级的GaAs外延薄膜,取得了突破性的进展。

2.4一维量子线、零维量子点半导体微结构材料

基于量子尺寸效应、量子干涉效应,量子隧穿效应和库仑阻效应以及非线性光学效应等的低维半导体材料是一种人工构造(通过能带工程实施)的新型半导体材料,是新一代微电子、光电子器件和电路的基础。它的发展与应用,极有可能触发新的技术革命。

目前低维半导体材料生长与制备主要集中在几个比较成熟的材料体系上,如GaAlAs/GaAs,In(Ga)As/GaAs,InGaAs/InAlAs/GaAs,InGaAs/InP,In(Ga)As/InAlAs/InP,InGaAsP/InAlAs/InP以及GeSi/Si等,并在纳米微电子和光电子研制方面取得了重大进展。俄罗斯约飞技术物理所MBE小组,柏林的俄德联合研制小组和中科院半导体所半导体材料科学重点实验室的MBE小组等研制成功的In(Ga)As/GaAs高功率量子点激光器,工作波长lμm左右,单管室温连续输出功率高达3.6~4W.特别应当指出的是我国上述的MBE小组,2001年通过在高功率量子点激光器的有源区材料结构中引入应力缓解层,抑制了缺陷和位错的产生,提高了量子点激光器的工作寿命,室温下连续输出功率为1W时工作寿命超过5000小时,这是大功率激光器的一个关键参数,至今未见国外报道。

在单电子晶体管和单电子存贮器及其电路的研制方面也获得了重大进展,1994年日本NTT就研制成功沟道长度为30nm纳米单电子晶体管,并在150K观察到栅控源-漏电流振荡;1997年美国又报道了可在室温工作的单电子开关器件,1998年Yauo等人采用0.25微米工艺技术实现了128Mb的单电子存贮器原型样机的制造,这是在单电子器件在高密度存贮电路的应用方面迈出的关键一步。目前,基于量子点的自适应网络计算机,单光子源和应用于量子计算的量子比特的构建等方面的研究也正在进行中。

与半导体超晶格和量子点结构的生长制备相比,高度有序的半导体量子线的制备技术难度较大。中科院半导体所半导体材料科学重点实验室的MBE小组,在继利用MBE技术和SK生长模式,成功地制备了高空间有序的InAs/InAI(Ga)As/InP的量子线和量子线超晶格结构的基础上,对InAs/InAlAs量子线超晶格的空间自对准(垂直或斜对准)的物理起因和生长控制进行了研究,取得了较大进展。

王中林教授领导的乔治亚理工大学的材料科学与工程系和化学与生物化学系的研究小组,基于无催化剂、控制生长条件的氧化物粉末的热蒸发技术,成功地合成了诸如ZnO、SnO2、In2O3和Ga2O3等一系列半导体氧化物纳米带,它们与具有圆柱对称截面的中空纳米管或纳米线不同,这些原生的纳米带呈现出高纯、结构均匀和单晶体,几乎无缺陷和位错;纳米线呈矩形截面,典型的宽度为20-300nm,宽厚比为5-10,长度可达数毫米。这种半导体氧化物纳米带是一个理想的材料体系,可以用来研究载流子维度受限的输运现象和基于它的功能器件制造。香港城市大学李述汤教授和瑞典隆德大学固体物理系纳米中心的LarsSamuelson教授领导的小组,分别在SiO2/Si和InAs/InP半导体量子线超晶格结构的生长制各方面也取得了重要进展。

低维半导体结构制备的方法很多,主要有:微结构材料生长和精细加工工艺相结合的方法,应变自组装量子线、量子点材料生长技术,图形化衬底和不同取向晶面选择生长技术,单原子操纵和加工技术,纳米结构的辐照制备技术,及其在沸石的笼子中、纳米碳管和溶液中等通过物理或化学方法制备量子点和量子线的技术等。目前发展的主要趋势是寻找原子级无损伤加工方法和纳米结构的应变自组装可控生长技术,以求获得大小、形状均匀、密度可控的无缺陷纳米结构。

2.5宽带隙半导体材料

宽带隙半导体材主要指的是金刚石,III族氮化物,碳化硅,立方氮化硼以及氧化物(ZnO等)及固溶体等,特别是SiC、GaN和金刚石薄膜等材料,因具有高热导率、高电子饱和漂移速度和大临界击穿电压等特点,成为研制高频大功率、耐高温、抗辐照半导体微电子器件和电路的理想材料;在通信、汽车、航空、航天、石油开采以及国防等方面有着广泛的应用前景。另外,III族氮化物也是很好的光电子材料,在蓝、绿光发光二极管(LED)和紫、蓝、绿光激光器(LD)以及紫外探测器等应用方面也显示了广泛的应用前景。随着1993年GaN材料的P型掺杂突破,GaN基材料成为蓝绿光发光材料的研究热点。目前,GaN基蓝绿光发光二极管己商品化,GaN基LD也有商品出售,最大输出功率为0.5W.在微电子器件研制方面,GaN基FET的最高工作频率(fmax)已达140GHz,fT=67GHz,跨导为260ms/mm;HEMT器件也相继问世,发展很快。此外,256×256GaN基紫外光电焦平面阵列探测器也已研制成功。特别值得提出的是,日本Sumitomo电子工业有限公司2000年宣称,他们采用热力学方法已研制成功2英寸GaN单晶材料,这将有力的推动蓝光激光器和GaN基电子器件的发展。另外,近年来具有反常带隙弯曲的窄禁带InAsN,InGaAsN,GaNP和GaNAsP材料的研制也受到了重视,这是因为它们在长波长光通信用高T0光源和太阳能电池等方面显示了重要应用前景。

以Cree公司为代表的体SiC单晶的研制已取得突破性进展,2英寸的4H和6HSiC单晶与外延片,以及3英寸的4HSiC单晶己有商品出售;以SiC为GaN基材料衬低的蓝绿光LED业已上市,并参于与以蓝宝石为衬低的GaN基发光器件的竟争。其他SiC相关高温器件的研制也取得了长足的进步。目前存在的主要问题是材料中的缺陷密度高,且价格昂贵。

II-VI族兰绿光材料研制在徘徊了近30年后,于1990年美国3M公司成功地解决了II-VI族的P型掺杂难点而得到迅速发展。1991年3M公司利用MBE技术率先宣布了电注入(Zn,Cd)Se/ZnSe兰光激光器在77K(495nm)脉冲输出功率100mW的消息,开始了II-VI族兰绿光半导体激光(材料)器件研制的高潮。经过多年的努力,目前ZnSe基II-VI族兰绿光激光器的寿命虽已超过1000小时,但离使用差距尚大,加之GaN基材料的迅速发展和应用,使II-VI族兰绿光材料研制步伐有所变缓。提高有源区材料的完整性,特别是要降低由非化学配比导致的点缺陷密度和进一步降低失配位错和解决欧姆接触等问题,仍是该材料体系走向实用化前必须要解决的问题。

宽带隙半导体异质结构材料往往也是典型的大失配异质结构材料,所谓大失配异质结构材料是指晶格常数、热膨胀系数或晶体的对称性等物理参数有较大差异的材料体系,如GaN/蓝宝石(Sapphire),SiC/Si和GaN/Si等。大晶格失配引发界面处大量位错和缺陷的产生,极大地影响着微结构材料的光电性能及其器件应用。如何避免和消除这一负面影响,是目前材料制备中的一个迫切要解决的关键科学问题。这个问题的解泱,必将大大地拓宽材料的可选择余地,开辟新的应用领域。

目前,除SiC单晶衬低材料,GaN基蓝光LED材料和器件已有商品出售外,大多数高温半导体材料仍处在实验室研制阶段,不少影响这类材料发展的关键问题,如GaN衬底,ZnO单晶簿膜制备,P型掺杂和欧姆电极接触,单晶金刚石薄膜生长与N型掺杂,II-VI族材料的退化机理等仍是制约这些材料实用化的关键问题,国内外虽已做了大量的研究,至今尚未取得重大突破。

3光子晶体

光子晶体是一种人工微结构材料,介电常数周期的被调制在与工作波长相比拟的尺度,来自结构单元的散射波的多重干涉形成一个光子带隙,与半导体材料的电子能隙相似,并可用类似于固态晶体中的能带论来描述三维周期介电结构中光波的传播,相应光子晶体光带隙(禁带)能量的光波模式在其中的传播是被禁止的。如果光子晶体的周期性被破坏,那么在禁带中也会引入所谓的“施主”和“受主”模,光子态密度随光子晶体维度降低而量子化。如三维受限的“受主”掺杂的光子晶体有希望制成非常高Q值的单模微腔,从而为研制高质量微腔激光器开辟新的途径。光子晶体的制备方法主要有:聚焦离子束(FIB)结合脉冲激光蒸发方法,即先用脉冲激光蒸发制备如Ag/MnO多层膜,再用FIB注入隔离形成一维或二维平面阵列光子晶体;基于功能粒子(磁性纳米颗粒Fe2O3,发光纳米颗粒CdS和介电纳米颗粒TiO2)和共轭高分子的自组装方法,可形成适用于可光范围的三维纳米颗粒光子晶体;二维多空硅也可制作成一个理想的3-5μm和1.5μm光子带隙材料等。目前,二维光子晶体制造已取得很大进展,但三维光子晶体的研究,仍是一个具有挑战性的课题。最近,Campbell等人提出了全息光栅光刻的方法来制造三维光子晶体,取得了进展。

4量子比特构建与材料

随着微电子技术的发展,计算机芯片集成度不断增高,器件尺寸越来越小(nm尺度)并最终将受到器件工作原理和工艺技术限制,而无法满足人类对更大信息量的需求。为此,发展基于全新原理和结构的功能强大的计算机是21世纪人类面临的巨大挑战之一。1994年Shor基于量子态叠加性提出的量子并行算法并证明可轻而易举地破译目前广泛使用的公开密钥Rivest,Shamir和Adlman(RSA)体系,引起了人们的广泛重视。

所谓量子计算机是应用量子力学原理进行计的装置,理论上讲它比传统计算机有更快的运算速度,更大信息传递量和更高信息安全保障,有可能超越目前计算机理想极限。实现量子比特构造和量子计算机的设想方案很多,其中最引人注目的是Kane最近提出的一个实现大规模量子计算的方案。其核心是利用硅纳米电子器件中磷施主核自旋进行信息编码,通过外加电场控制核自旋间相互作用实现其逻辑运算,自旋测量是由自旋极化电子电流来完成,计算机要工作在mK的低温下。

这种量子计算机的最终实现依赖于与硅平面工艺兼容的硅纳米电子技术的发展。除此之外,为了避免杂质对磷核自旋的干扰,必需使用高纯(无杂质)和不存在核自旋不等于零的硅同位素(29Si)的硅单晶;减小SiO2绝缘层的无序涨落以及如何在硅里掺入规则的磷原子阵列等是实现量子计算的关键。量子态在传输,处理和存储过程中可能因环境的耦合(干扰),而从量子叠加态演化成经典的混合态,即所谓失去相干,特别是在大规模计算中能否始终保持量子态间的相干是量子计算机走向实用化前所必需克服的难题。

5发展我国半导体材料的几点建议

鉴于我国目前的工业基础,国力和半导体材料的发展水平,提出以下发展建议供参考。

5.1硅单晶和外延材料硅材料作为微电子技术的主导地位

至少到本世纪中叶都不会改变,至今国内各大集成电路制造厂家所需的硅片基本上是依赖进口。目前国内虽已可拉制8英寸的硅单晶和小批量生产6英寸的硅外延片,然而都未形成稳定的批量生产能力,更谈不上规模生产。建议国家集中人力和财力,首先开展8英寸硅单晶实用化和6英寸硅外延片研究开发,在“十五”的后期,争取做到8英寸集成电路生产线用硅单晶材料的国产化,并有6~8英寸硅片的批量供片能力。到2010年左右,我国应有8~12英寸硅单晶、片材和8英寸硅外延片的规模生产能力;更大直径的硅单晶、片材和外延片也应及时布点研制。另外,硅多晶材料生产基地及其相配套的高纯石英、气体和化学试剂等也必需同时给以重视,只有这样,才能逐步改观我国微电子技术的落后局面,进入世界发达国家之林。

5.2GaAs及其有关化合物半导体单晶材料发展建议

GaAs、InP等单晶材料同国外的差距主要表现在拉晶和晶片加工设备落后,没有形成生产能力。相信在国家各部委的统一组织、领导下,并争取企业介入,建立我国自己的研究、开发和生产联合体,取各家之长,分工协作,到2010年赶上世界先进水平是可能的。要达到上述目的,到“十五”末应形成以4英寸单晶为主2-3吨/年的SI-GaAs和3-5吨/年掺杂GaAs、InP单晶和开盒就用晶片的生产能力,以满足我国不断发展的微电子和光电子工业的需术。到2010年,应当实现4英寸GaAs生产线的国产化,并具有满足6英寸线的供片能力。

5.3发展超晶格、量子阱和一维、零维半导体微结构材料的建议

(1)超晶格、量子阱材料从目前我国国力和我们已有的基础出发,应以三基色(超高亮度红、绿和蓝光)材料和光通信材料为主攻方向,并兼顾新一代微电子器件和电路的需求,加强MBE和MOCVD两个基地的建设,引进必要的适合批量生产的工业型MBE和MOCVD设备并着重致力于GaAlAs/GaAs,InGaAlP/InGaP,GaN基蓝绿光材料,InGaAs/InP和InGaAsP/InP等材料体系的实用化研究是当务之急,争取在“十五”末,能满足国内2、3和4英寸GaAs生产线所需要的异质结材料。到2010年,每年能具备至少100万平方英寸MBE和MOCVD微电子和光电子微结构材料的生产能力。达到本世纪初的国际水平。

半导体光电技术范文篇10

本书将从物理、技术和设备操作方面对使用硅及相关合金制备的光子器件进行概述,包括以下内容:1硅光子学概述,从介绍VLSI的发展过程以及存在的问题出发引出本书将要讲述的内容;2硅的基本性能,介绍了硅能带结构、状态密度函数和杂质,并讲述了硅基异质结和异质结构的性质;3量子结构,对量子阱、量子线和点、超晶格、Si基量子结构进行了讲述;4光学过程,主要讲述了半导体中相关光学过程基本理论,包括光学常数、基本概念以及光吸收、发射等理论;5量子结构中的光学过程,主要讲述量子井、量子线和量子点这些纳米结构中的光学过程的基本原理;6硅光发射器,主要讲述了半导体发光基本原理,以及具体半导体光发射器,并对激发光发射进行展望;7硅光调制器,主要讲述了光调制相关的一些基本物理效应以及硅的电折射效应和热光效应,介绍了光调制器一些特性以及相关的光、电结构,最后讲述了高带宽光调制器;8硅光电检测器,介绍了光电检测器原理以及重要性质,讲述了一些具体的光电检测器;9拉曼激光,主要讲述了拉曼激光的概念、简化理论、硅的拉曼效应,并对拉曼系数进行了介绍,最后具体讲述了一种连续波拉曼激光;10导光波导言,介绍了光导的射线光理论以及反射系数,讲述了集中具体的波导:平面波导模型、光导波理论、3D光波导,最后讲述了波导损耗、波导与光器件的耦合;11平面波导器件原理,讲述了平面波导耦合模型、直接耦合器、分布式布拉格反射镜,并具体讲述了一些平面波导器件;12用于密集波分复用系统的波导,主要讲述了阵列波导光栅的结构、工作原理和特性,介绍了提高阵列波导光栅性能的方法,列举了具体应用;13制备工艺及材料系统,主要讲述了光电子器件制备的主要工艺及材料处理方法。

本书描绘了硅光子学器件的基本工作原理和结构,并深入讲述了硅光子学现在发展以及展望了硅光子学未来,可以作为高等院校高年级本科生和研究生的教材和参考书,也可作为半导体光子学、光电集成、光电子器件、信息网络系统、计算机光互连及相关技术领域的科研人员、工程技术人员的参考书。

作者M.JamalDeen是加拿大McMaster大学的教授,IEEETransactionsonElectronDevices的编辑,FluctuationsandNoiseLetters的执行编辑,加拿大皇家学会会士,加拿大工程院院士,IEEE院士,美国物理学会会士。他目前的研究领域是:微米纳米电子学、光电子学及其在生命和环境科学中的应用。

半导体光电技术范文篇11

光电子产业包括信息光电子、能量光电子、消费光电子、军事光电子、软件与网络等领域。光电子技术不仅全面继承兼容电子技术,而且具有微电子无法比拟的优越性能,更广阔应用范围,光电子产业成为21世纪最具魅力的朝阳产业。

科学家预言,随着光电子潜力的发掘,这一行业的产值将在2010年达到50000亿美元,成为21世纪最大产业。

新型液晶显示器背光源制备及全色显示器研究

项目简介:该项目合成了高效且宽带光谱的白光材料(Zn(BTZ)2),确定其光致发光主峰及范围;制备了两类新型单一发光层的白色有机电致发光器件(OLED):掺杂型Zn(BTZ)2器件和混合型LPPP器件;进行了器件发光性能研究,研究了产生白光的激发过程和提高效率的途径;进行了器件用于液晶显示的背光源的研究,做出两类较大面积均匀的背光源,达到可使用水平;将器件与光学滤色片结合得到全色显示,测量了所得三基色发光强度、色度与光谱,混色后获彩色光;进行了柔性OLED研究,并做出相应的器件。

超高亮LED

项目简介:超高亮LED是指用四元系材料AlGaInP生产的红、橙、黄色超高亮度LED和用四元系材料AlGaInN(亦称为GaN基材料)生产的蓝色、绿色、紫色和紫外光超高亮度LED。产品的主要技术性能如下:超高发光强度,Iv最高可达10cd以上。比传统LED的光强高出几十倍,可作为小型照明光源。发光颜色全:包括红、黄、绿、蓝、白、紫等可见光区域的各个波段,波长λD:400~660nm。功耗小:作为照明光源,超高亮LED与传统光源相比,功耗仅为传统光源的十分之一。抗静电能力强,GaN基LED的ESD值为500V以上。指向性好,半强度角θ1/2可达120度以上。

LED非点阵大面积平面发光技术

项目简介:LED非点阵大面积平面发光技术术采用了先进的半导体光源、独特的光学设计和工艺材料,形成高效导光系统,制成了平板化、大面积、均匀发光的器件。该成果工作原理正确,思路新颖,选材科学,在国内率先实现了LED由点光源向大面积平面光源的转换,具有创新性,达到了国内先进技术水平。

网络直联式农药残留测定仪及分布式监控系统

项目简介:该课题针对农药残毒速测仪的应用环境和政府对农药残毒进行监测的需求专门设计简便可靠的农药残毒速测仪,并采用新型半导体光源,不需要滤光片,避免了使用传统的卤素灯加虑光片作为光源,光源寿命短而且滤光片容易长霉的缺点,而且能够达到快速检测的功能,1分钟可完成检测,可即时输出检测数据并能保存历史数据,并集成图形点阵液晶显示屏、具备高速微型打印机、大容量存储器。

意义:该课题研制的网络直联式农药残留测定仪及分布式监控系统灵敏度高、稳定性好,检测结果准确可靠,完全满足了农残检测需要,其质量和性能在国内同类产品中居领先水平。

贴片式大功率LED信号灯

项目简介:该项目是一项采用贴片式大功率LED光源,综合了光学设计、结构设计以及电子设计的新型交通信号灯产品。采用新材料、新光源,生产工艺简单,提高了发光效率,降低了能耗。在光学设计上打破传统LED一一对应的配光方式,采用反射与折射相结合、聚散结合、光束重组的方式,达到利用率高、均匀性好的特点,无以往信号灯产品易产生暗斑这一致命缺陷。由于整灯光源管数小,因此其生产工艺比之普通LED信号灯大大简单。能容许较大范围的电流,能适应不太稳定的电网波动。既保证了散热效果,又保证了密封性能,较好的解决了两者矛盾。使用寿命长,免于维护。

1W聚光型白光功率半导体发光二极管

项目简介:聚光型白光功率半导体发光二极管结构主要是由功率型LED芯片、热沉底座和光学系统组成,蓝色发光芯片装于散热良好的引线框架上,光学透镜覆盖芯片上形成一定的光学空间分布,同时保护芯片,透镜与芯片之间填充柔性硅胶以保护芯片和金丝。该项目采用兰色芯片上涂覆YAG荧光粉,通过混光后产生白光,制备方法比较简单,成本也相对较低。

意义:功率型超高亮LED是一种高效的环保的绿色固体光源,具有寿命长,功耗小,亮度高,低维护等特点,将取代白炽灯和荧光灯等传统玻壳照明光源。

一种自动调节光亮的数码摄像头

项目简介:该成果公开了一种自动调节光亮的数码摄像头。其技术方案的要点是,数码摄像头主体是一个“”字形结构,在其两侧安装发光二极管以照射光亮,光源感光器安装在上部,机芯内部加入一个光亮度调节器,由于自带光源,因此能在没有光亮的环境下,可以正常摄取被拍摄人物的影像。数码摄像头体积小,重量轻、耗电省、寿命长,制造成本低,经济实用,便于在网吧,学校,家庭和办公环境中使用。

分子基和有机/无机复合光电子材料的设计、合成及应用

项目简介:该项目的实施包括从配体、配合物的设计、合成与筛选,无机和有机材料的制备与功能团的修饰、结构确定、光物理性质、光致和电致发光研究以及分子组装及材料的应用开发。其设计合成羟基、双键或炔基等配体与金属铜、锌、金、铂形成的单体、多核和高聚物分子基光电子材料,通过进行X射线衍射结构确定、光致和电致发光测定、发射和猝灭与环境的关系研究、激发光谱和瞬态时间分辨吸收光谱测定,来探讨发生的起源、激发态的结构、收买、谱学规律以及电荷转移和能量转移规律。

意义:在此基础上,设计和合成出高量子效率,有较佳应用价值的发光材料。

激光与光电子技术在生物组织光学特性测量中的应用及其医用新技术

项目简介:该项目主要内容包括:创建生物组织光学新体系,开拓人体组织光学性质的新测定方法和新技术。激光荧光法肺癌定位的彩图像技术与系统,采用“共轴微光-荧光肺癌诊断和定位仪器”技术,研制激光荧光法肺癌定位彩图像装置。激光血管外照射技术与仪器,开拓激光血管外照射治疗技术,完成治疗用激光剂量参数的活体测量,研制半导体激光治疗机。

意义:组织光学体系独创性的构建与论述以及测定人体组织光学性质的新方法与新技术,为开拓激光技术在医学领域的新应用建立了基础。“激光荧光法肺癌定位的彩图像装置”实现了肺癌早期诊断与实时定位。

可协变硅绝缘衬底上生长宽禁带半导体碳化硅外延材料及器件制备

项目简介:该项目属新材料领域的半导体新型基底晶体材料,是在非晶层上的纳米晶体薄膜上,制备宽禁带半导体碳化硅外延薄膜。其核心技术是采用低维化的纳米晶体薄膜其晶格常数的可协变性,来提高其上生长的外延薄膜的晶体质量。该项目技术思想具有重大的原始创新性,属于国际领先的技术。项目正在开发自主知识产权的核心专利。项目将解决在价格低廉的硅可协变基底上,生长稀有半导体如碳化硅等宽禁带材料。项目将推动我国在高频、高温、大功率和紫外光电子等领域的发展。

意义:该项目的可协变硅衬底技术,可以大幅度提高传统硅衬底材料的附加值;在其上生长的碳化硅等宽禁带半导体材料,在高频、高温、大功率、及蓝光和紫外光电子领域有广泛应用。

HWD11201多功能温控系统MTCS数据采集电路

项目简介:HWD11201多功能温控系统MTCS数据采集电路是一小型、安全、精密的单片温度控制电路。其功能完善,具备有:9600bit/s固定波特率的通信串口,与HWD1709数字编码感温电路专用单总线口,内部模糊处理逻辑块,高低温报警触发器,一个基准压源、一个8位的A/D转换器以及内部逻辑控制电路。该片可完成温度控制、报警输出的全部控制功能。它主要用于珀尔帖效应模块的控制。它可维持±0.35°C的温度稳定性,具备电压超限保护。主要应用于激光器、半导体激光二极管、EDFA光放大器以及各类环境控制、过程监控系统中。

意义:该电路的需求量较大,应用前景广泛。目前,半导体激光器的应用覆盖了整个光电子学领域,全世界的激光器市场每年的份额达数百亿美元。其技术已成为当今光电子科学的核心技术,在工业、医疗、信息显示等领域具有广泛的应用前景,对军事领域的跟踪、制导、武器模拟、点火引爆、雷达等诸多方面更具有重要作用。

新型光电化学太阳能电池

项目简介:新型光电化学太阳能电池是上个世纪90年代初期出现的一类新型太阳能电池。本课题组研制出新型太阳能电池多种。电解质材料的设计方面:采用聚乙二醇等作为溶剂在高温下溶解I^-/I^(3-)电解质,在室温下固化。采用丙烯酸单体溶解电解质,在催化剂作用下,室温自交联,形成固体电解质。二氧化钛多孔膜制备方面:采用水热法生长出符合要求的二氧化钛纳米晶,通过酸处理,改善二氧化钛纳米多孔膜的表面结构活性;载流子传输机理方面:提出了空穴向对阴极(正极)的迁移是通过电子-离子氧化还原过程实现。在器件组装方面:组装了几种光电化学太阳能电池。

意义:研究结果在新材料设计、新型半导体材料、光电功能材料、光电子学、光电子器件等方面具有重要的科学意义,在太阳能开发方面具有良好的应用前景。

新型GaAs基近红外低维结构半导体光电材料与器件

项目简介:该项目全面开展了GaAs基1.0-1.6微米材料生长、低维结构物理、激光器与探测器制备等研究工作,得到国家科技部、自然科学基金委、中科院创新工程等的支持,取得一系列具有国际反响的研究成果:GaAs基近红外材料能带结构、发光物理特性理论研究;GaAs基近红外低维材料生长、发光物理特性实验研究;GaAs基近红外激光器和探测器实验研究。上

意义:述研究成果标志着我国砷化镓基近红外光电子材料与器件研究水平进入世界先进行列。

SOI光波导单模条件研究及特殊功能光波导器件设计制备技术

项目简介:该项目为SOI光子集成,它的首要问题是确定精确的单模传输条件、设计制备性能优异的特种功能光波导器件结构、解决同单模光纤的高效率耦合以及缩小芯片尺寸提高集成度。单模传输条件是一切光波导器件设计的基础,精确单模条件的获得对于指导光波导器件的设计具有重要意义。

意义:该项目在SOI光子集成和光电子集成方面进行了系统而深入的研究工作,特别是在特殊功能新型SOI光波导器件的设计制备及大规模光子集成芯片研制方面,均有多项创新性成果,始终走在国际的前列。

大规模SOI光波导光开关阵列集成技术

项目简介:该项目为研究性能优异的光开关,它是实现高速大容量全光网的首要问题之一。该项目在国际上首次将模斑变换器和微型反射镜集成到SOI光开关阵列中,首次研制成功了集成度为8×8和16×16的SOI光波导开关阵列,其综合技术指标在国际上处于领先地位,由于研制的SOI光开关阵列其制备工艺同目前发展十分成熟的微电子标准CMOS工艺完全兼容,因此制造成本非常低廉。

意义:与国际上已经商用的MEMS光开关、聚合物及SiO2波导光开关相比,SOI波导光开关在开关速率、长期使用可靠性、制造成本方面具有很大的优势,特别是SOI波导光开关具备同硅基光电子器件,因此SOI波导光开关阵列的研制成功具有很大的技术推动意义。

多媒体高清晰教学及多用途背投显示设备

项目简介:该项目采用高倍短焦镜头,使1.5米内屏幕显示100英寸,而且四角边沿画面清晰不变形;光学反光器件采用高尖端紫外线滤过技术,纯色光达到90%以上,避免紫外线对人体及眼睛的伤害;高效节能电源、追光电子元件的开发,使500W的电源达到1500W的光效;光源发光持久,延缓衰减,使使用寿命从原来的1000小时延长到8000小时;自动温控,预期达到自动调温,使整机连续工作百小时以上无障碍。

意义:该显示设备是是现代化建设必要设备,发展前景非常广阔。

PON用突发式光模块

项目简介:该模块主要包括BPONONU突发式光模块、EPONONU突发式模块、EPONOLT突发式光模块。该系列模块主要应用于以PON(无源光网络)接入技术为主的宽带光接入网,从而实现光纤到户。突发模式光收发模块是PON系统中的物理层器件。BPON/EPONONU侧的光模块能够迅速打开/开断激光器。而OLT侧的光模块是要求能够在短时间内正确恢复不同ONU发送的不同功率的光信号。

意义:OLT模块最关键的指标是突发接收时北京时间,光接收灵敏度、饱和光功率,及相邻光信号所允许的动态范围。

宽带可调谐半导体激光器

项目简介:该课题研究了四种基于InP材料的单片集成技术,实现了基于InP衬底的较灵活的能带剪裁,为光电子器件的多功能单片集成打下了基础;采用量子阱混杂技术,成功实现了75nm的量子阱带隙波长蓝移量,在此基础上实现了取样光栅分布布拉格反射宽带可调谐激光器,在增益区电流为150mA时,激光器芯片的输出功率达到了9mW,单模调谐范围最高达41nm,宽带可调谐激光器组件输出功率大于0dBm;成功研制出一套基于LabVIEW软件平台的自动化的宽带可调谐SG-DBR激光器波长测试控制系统,提出了一种利用输出光的边模抑制比,从调谐数据库中筛选出激光器模式稳定工作点的算法,应用该系统对研制的SG-DBR激光器进行大量实验测试和波长查询,实验结果表明本系统稳定、可靠、波长控制精度高,波长控制误差不超过±0.02nm;还研制了可调谐半导体激光器的多路程控电流源,为宽带可调谐激光器的实用化奠定了基础。

CMOS图像传感器

项目简介:该项目调整CMOS工艺和结构,设计出N型衬底的CMOS图像传感器,采用0.18um工艺,并成攻流片;衬底和外延层使用不同类型的半导体材料,构成一个PN结,在反偏时会在衬底和电荷收集区之间形成势垒,阻碍衬底中的噪声电荷通过外延层流向电荷收集区,抑制像素之间的串扰。在除感光单元阵列的电路下注入深层的P阱或者N阱,防止衬底和电路之间发生闩锁效应;提出新结构的光电二极管来提高其量子效应、降低噪声、提高光电子转化效率;采用sensor架构,有效减少串扰;进行了颜色纠正;对A/D转换器的结构进行调整,电路几乎没有静态电量消耗。采用了高精度的A/D模块、相关双采样(CDS)、FPN消除算法,能够使图像更为平滑。

红外传感全自检光电保护装置

项目简介:该项目主要研究和解决了小型化的电子电路原理和结构、对接扩展技术―模块化电路结构、提高检测精度技术、保证适当检测距离―保护长度的技术、抗干扰技术、滤波技术、光电子技术、光学技术、多种安装技术、减振技术、安全可靠性能―全自检技术等相关技术。通过解决了一系列问题,使成果技术达到了较高检测精度,保证适当的检测距离,全自检安全可靠性能,安装使用方便,外形小巧美观,价格较为经济的市场期望。

意义:该项目技术成果的市场前景是相当广阔和有生命力的。

硅基发光材料研究

项目简介:该成果采用掺钛化学腐蚀法成功制备了发光稳定和发光均匀的多孔硅,采用H_2O_2催化方法制备了形貌更平整、细密、均匀的多孔硅。并通过对多孔硅在不同激光功率下的Raman光谱和光致发光谱的研究,发现当激光功率增大到某一值时,晶格畸变使多孔硅由线性转变为光致非线性材料,引起非线性吸收系数增大,导致光致发光谱的明显增强。

意义:研究成果对于硅基发光材料的理论研究和应用基础研究具有显著的实际意义,对推动硅基光电子集成技术的发展具有重要意义。

单片集成光器件关键技术研究

该项目简介:项目采用自主开发软件建立了一套集模拟仿真与CAD功能于一体的光电集成器件设计软件平台;开发了包括MOCVD外延、光刻、腐蚀、光栅等各道工艺的RWG、DC-PBH类型单片集成芯片关键工艺技术和光电集成相关的凸点flipchip倒装焊技术,建立并完善了单片/混合集成器件OEIC工艺技术制作平台,并具备了批量生产能力;对所设计的混合集成器件进行工艺验证,建立并完善了设计和制作平台,发展相应的工艺制作、耦合封装和模块设计技术。

意义:该成果完成了针对典型的混合集成光电子(OEIC)器件2.5Gb/s混合集成光发射机与光接收机模块进行的设计开发和工艺验证,提高了我国集成光器件整体制作技术水平,处于国内领先、国际先进水平。

红外电子材料的优化设计研究

项目简介:该项目的最重要特色就是将研究目的设定在解决我国国防战略性高技术发展中红外光电子材料这类瓶颈性技术上单一的跟踪性工艺研究模式。具体是在我国红外光电子材料发展中提出针对制备工艺中遇到的基本物理问题进行系统的研究,逐步地提出与工艺研究一起建立可优化材料的设计平台。而最重要的创新点是提出了材料芯片这一最新发展起来的技术在项目研究中的开拓性应用。

在蓝宝石衬底上研制ZnO同质pn结及其电致发光

项目简介:该项目利用分子束外延设备研制高载流子浓度的P型ZnO材料及ZnOP-N结紫外发光二极管和激光器。该项目选择在价格适宜、工艺成熟的蓝宝石(Al_2O_3)衬底上开展p型ZnO的制备及相关结型器件的研究工作,在国内首次获得了室温下光泵浦的紫外受激发射;制备出低阻p型ZnO薄膜材料,载流子浓度最高达到10^(19)/cm^3;研制了ZnO同质pn结,在室温下观测到了来自同质结电泵蓝紫色发光。

意义:该成果达到和国外同步发展,在国内器件研制方面处于领先水平,对于探索制备实用型ZnO结型发光和激光器件的途径,具有重要研究价值。

新型微片激光材料与器件研究

半导体光电技术范文

关键词半导体材料量子线量子点材料光子晶体

1半导体材料的战略地位

上世纪中叶,单晶硅和半导体晶体管的发明及其硅集成电路的研制成功,导致了电子工业革命;上世纪70年代初石英光导纤维材料和GaAs激光器的发明,促进了光纤通信技术迅速发展并逐步形成了高新技术产业,使人类进入了信息时代。超晶格概念的提出及其半导体超晶格、量子阱材料的研制成功,彻底改变了光电器件的设计思想,使半导体器件的设计与制造从“杂质工程”发展到“能带工程”。纳米科学技术的发展和应用,将使人类能从原子、分子或纳米尺度水平上控制、操纵和制造功能强大的新型器件与电路,必将深刻地影响着世界的政治、经济格局和军事对抗的形式,彻底改变人们的生活方式。

2几种主要半导体材料的发展现状与趋势

2.1硅材料

从提高硅集成电路成品率,降低成本看,增大直拉硅(CZ-Si)单晶的直径和减小微缺陷的密度仍是今后CZ-Si发展的总趋势。目前直径为8英寸(200mm)的Si单晶已实现大规模工业生产,基于直径为12英寸(300mm)硅片的集成电路(IC‘s)技术正处在由实验室向工业生产转变中。目前300mm,0.18μm工艺的硅ULSI生产线已经投入生产,300mm,0.13μm工艺生产线也将在2003年完成评估。18英寸重达414公斤的硅单晶和18英寸的硅园片已在实验室研制成功,直径27英寸硅单晶研制也正在积极筹划中。

从进一步提高硅IC‘S的速度和集成度看,研制适合于硅深亚微米乃至纳米工艺所需的大直径硅外延片会成为硅材料发展的主流。另外,SOI材料,包括智能剥离(Smartcut)和SIMOX材料等也发展很快。目前,直径8英寸的硅外延片和SOI材料已研制成功,更大尺寸的片材也在开发中。

理论分析指出30nm左右将是硅MOS集成电路线宽的“极限”尺寸。这不仅是指量子尺寸效应对现有器件特性影响所带来的物理限制和光刻技术的限制问题,更重要的是将受硅、SiO2自身性质的限制。尽管人们正在积极寻找高K介电绝缘材料(如用Si3N4等来替代SiO2),低K介电互连材料,用Cu代替Al引线以及采用系统集成芯片技术等来提高ULSI的集成度、运算速度和功能,但硅将最终难以满足人类不断的对更大信息量需求。为此,人们除寻求基于全新原理的量子计算和DNA生物计算等之外,还把目光放在以GaAs、InP为基的化合物半导体材料,特别是二维超晶格、量子阱,一维量子线与零维量子点材料和可与硅平面工艺兼容GeSi合金材料等,这也是目前半导体材料研发的重点。

2.2GaAs和InP单晶材料

GaAs和InP与硅不同,它们都是直接带隙材料,具有电子饱和漂移速度高,耐高温,抗辐照等特点;在超高速、超高频、低功耗、低噪音器件和电路,特别在光电子器件和光电集成方面占有独特的优势。

目前,世界GaAs单晶的总年产量已超过200吨,其中以低位错密度的垂直梯度凝固法(VGF)和水平(HB)方法生长的2-3英寸的导电GaAs衬底材料为主;近年来,为满足高速移动通信的迫切需求,大直径(4,6和8英寸)的SI-GaAs发展很快。美国莫托罗拉公司正在筹建6英寸的SI-GaAs集成电路生产线。InP具有比GaAs更优越的高频性能,发展的速度更快,但研制直径3英寸以上大直径的InP单晶的关键技术尚未完全突破,价格居高不下。

GaAs和InP单晶的发展趋势是:

(1)。增大晶体直径,目前4英寸的SI-GaAs已用于生产,预计本世纪初的头几年直径为6英寸的SI-GaAs也将投入工业应用。

(2)。提高材料的电学和光学微区均匀性。

(3)。降低单晶的缺陷密度,特别是位错。

(4)。GaAs和InP单晶的VGF生长技术发展很快,很有可能成为主流技术。

2.3半导体超晶格、量子阱材料

半导体超薄层微结构材料是基于先进生长技术(MBE,MOCVD)的新一代人工构造材料。它以全新的概念改变着光电子和微电子器件的设计思想,出现了“电学和光学特性可剪裁”为特征的新范畴,是新一代固态量子器件的基础材料。

(1)Ⅲ-V族超晶格、量子阱材料。

GaAIAs/GaAs,GaInAs/GaAs,AIGaInP/GaAs;GalnAs/InP,AlInAs/InP,InGaAsP/InP等GaAs、InP基晶格匹配和应变补偿材料体系已发展得相当成熟,已成功地用来制造超高速,超高频微电子器件和单片集成电路。高电子迁移率晶体管(HEMT),赝配高电子迁移率晶体管(P-HEMT)器件最好水平已达fmax=600GHz,输出功率58mW,功率增益6.4db;双异质结双极晶体管(HBT)的最高频率fmax也已高达500GHz,HEMT逻辑电路研制也发展很快。基于上述材料体系的光通信用1.3μm和1.5μm的量子阱激光器和探测器,红、黄、橙光发光二极管和红光激光器以及大功率半导体量子阱激光器已商品化;表面光发射器件和光双稳器件等也已达到或接近达到实用化水平。目前,研制高质量的1.5μm分布反馈(DFB)激光器和电吸收(EA)调制器单片集成InP基多量子阱材料和超高速驱动电路所需的低维结构材料是解决光纤通信瓶颈问题的关键,在实验室西门子公司已完成了80×40Gbps传输40km的实验。另外,用于制造准连续兆瓦级大功率激光阵列的高质量量子阱材料也受到人们的重视。

虽然常规量子阱结构端面发射激光器是目前光电子领域占统治地位的有源器件,但由于其有源区极薄(~0.01μm)端面光电灾变损伤,大电流电热烧毁和光束质量差一直是此类激光器的性能改善和功率提高的难题。采用多有源区量子级联耦合是解决此难题的有效途径之一。我国早在1999年,就研制成功980nmInGaAs带间量子级联激光器,输出功率达5W以上;2000年初,法国汤姆逊公司又报道了单个激光器准连续输出功率超过10瓦好结果。最近,我国的科研工作者又提出并开展了多有源区纵向光耦合垂直腔面发射激光器研究,这是一种具有高增益、极低阈值、高功率和高光束质量的新型激光器,在未来光通信、光互联与光电信息处理方面有着良好的应用前景。

为克服PN结半导体激光器的能隙对激光器波长范围的限制,1994年美国贝尔实验室发明了基于量子阱内子带跃迁和阱间共振隧穿的量子级联激光器,突破了半导体能隙对波长的限制。自从1994年InGaAs/InAIAs/InP量子级联激光器(QCLs)发明以来,Bell实验室等的科学家,在过去的7年多的时间里,QCLs在向大功率、高温和单膜工作等研究方面取得了显着的进展。2001年瑞士Neuchatel大学的科学家采用双声子共振和三量子阱有源区结构使波长为9.1μm的QCLs的工作温度高达312K,连续输出功率3mW.量子级联激光器的工作波长已覆盖近红外到远红外波段(3-87μm),并在光通信、超高分辨光谱、超高灵敏气体传感器、高速调制器和无线光学连接等方面显示出重要的应用前景。中科院上海微系统和信息技术研究所于1999年研制成功120K5μm和250K8μm的量子级联激光器;中科院半导体研究所于2000年又研制成功3.7μm室温准连续应变补偿量子级联激光器,使我国成为能研制这类高质量激光器材料为数不多的几个国家之一。

目前,Ⅲ-V族超晶格、量子阱材料作为超薄层微结构材料发展的主流方向,正从直径3英寸向4英寸过渡;生产型的MBE和M0CVD设备已研制成功并投入使用,每台年生产能力可高达3.75×104片4英寸或1.5×104片6英寸。英国卡迪夫的MOCVD中心,法国的PicogigaMBE基地,美国的QED公司,Motorola公司,日本的富士通,NTT,索尼等都有这种外延材料出售。生产型MBE和MOCVD设备的成熟与应用,必然促进衬底材料设备和材料评价技术的发展。

(2)硅基应变异质结构材料。

硅基光、电器件集成一直是人们所追求的目标。但由于硅是间接带隙,如何提高硅基材料发光效率就成为一个亟待解决的问题。虽经多年研究,但进展缓慢。人们目前正致力于探索硅基纳米材料(纳米Si/SiO2),硅基SiGeC体系的Si1-yCy/Si1-xGex低维结构,Ge/Si量子点和量子点超晶格材料,Si/SiC量子点材料,GaN/BP/Si以及GaN/Si材料。最近,在GaN/Si上成功地研制出LED发光器件和有关纳米硅的受激放大现象的报道,使人们看到了一线希望。

另一方面,GeSi/Si应变层超晶格材料,因其在新一代移动通信上的重要应用前景,而成为目前硅基材料研究的主流。Si/GeSiMODFET和MOSFET的最高截止频率已达200GHz,HBT最高振荡频率为160GHz,噪音在10GHz下为0.9db,其性能可与GaAs器件相媲美。

尽管GaAs/Si和InP/Si是实现光电子集成理想的材料体系,但由于晶格失配和热膨胀系数等不同造成的高密度失配位错而导致器件性能退化和失效,防碍着它的使用化。最近,Motolora等公司宣称,他们在12英寸的硅衬底上,用钛酸锶作协变层(柔性层),成功的生长了器件级的GaAs外延薄膜,取得了突破性的进展。

2.4一维量子线、零维量子点半导体微结构材料

基于量子尺寸效应、量子干涉效应,量子隧穿效应和库仑阻效应以及非线性光学效应等的低维半导体材料是一种人工构造(通过能带工程实施)的新型半导体材料,是新一代微电子、光电子器件和电路的基础。它的发展与应用,极有可能触发新的技术革命。

目前低维半导体材料生长与制备主要集中在几个比较成熟的材料体系上,如GaAlAs/GaAs,In(Ga)As/GaAs,InGaAs/InAlAs/GaAs,InGaAs/InP,In(Ga)As/InAlAs/InP,InGaAsP/InAlAs/InP以及GeSi/Si等,并在纳米微电子和光电子研制方面取得了重大进展。俄罗斯约飞技术物理所MBE小组,柏林的俄德联合研制小组和中科院半导体所半导体材料科学重点实验室的MBE小组等研制成功的In(Ga)As/GaAs高功率量子点激光器,工作波长lμm左右,单管室温连续输出功率高达3.6~4W.特别应当指出的是我国上述的MBE小组,2001年通过在高功率量子点激光器的有源区材料结构中引入应力缓解层,抑制了缺陷和位错的产生,提高了量子点激光器的工作寿命,室温下连续输出功率为1W时工作寿命超过5000小时,这是大功率激光器的一个关键参数,至今未见国外报道。

-

半导体材料研究的新进展

在单电子晶体管和单电子存贮器及其电路的研制方面也获得了重大进展,1994年日本NTT就研制成功沟道长度为30nm纳米单电子晶体管,并在150K观察到栅控源-漏电流振荡;1997年美国又报道了可在室温工作的单电子开关器件,1998年Yauo等人采用0.25微米工艺技术实现了128Mb的单电子存贮器原型样机的制造,这是在单电子器件在高密度存贮电路的应用方面迈出的关键一步。目前,基于量子点的自适应网络计算机,单光子源和应用于量子计算的量子比特的构建等方面的研究也正在进行中。

与半导体超晶格和量子点结构的生长制备相比,高度有序的半导体量子线的制备技术难度较大。中科院半导体所半导体材料科学重点实验室的MBE小组,在继利用MBE技术和SK生长模式,成功地制备了高空间有序的InAs/InAI(Ga)As/InP的量子线和量子线超晶格结构的基础上,对InAs/InAlAs量子线超晶格的空间自对准(垂直或斜对准)的物理起因和生长控制进行了研究,取得了较大进展。

王中林教授领导的乔治亚理工大学的材料科学与工程系和化学与生物化学系的研究小组,基于无催化剂、控制生长条件的氧化物粉末的热蒸发技术,成功地合成了诸如ZnO、SnO2、In2O3和Ga2O3等一系列半导体氧化物纳米带,它们与具有圆柱对称截面的中空纳米管或纳米线不同,这些原生的纳米带呈现出高纯、结构均匀和单晶体,几乎无缺陷和位错;纳米线呈矩形截面,典型的宽度为20-300nm,宽厚比为5-10,长度可达数毫米。这种半导体氧化物纳米带是一个理想的材料体系,可以用来研究载流子维度受限的输运现象和基于它的功能器件制造。香港城市大学李述汤教授和瑞典隆德大学固体物理系纳米中心的LarsSamuelson教授领导的小组,分别在SiO2/Si和InAs/InP半导体量子线超晶格结构的生长制各方面也取得了重要进展。

低维半导体结构制备的方法很多,主要有:微结构材料生长和精细加工工艺相结合的方法,应变自组装量子线、量子点材料生长技术,图形化衬底和不同取向晶面选择生长技术,单原子操纵和加工技术,纳米结构的辐照制备技术,及其在沸石的笼子中、纳米碳管和溶液中等通过物理或化学方法制备量子点和量子线的技术等。目前发展的主要趋势是寻找原子级无损伤加工方法和纳米结构的应变自组装可控生长技术,以求获得大小、形状均匀、密度可控的无缺陷纳米结构。

2.5宽带隙半导体材料

宽带隙半导体材主要指的是金刚石,III族氮化物,碳化硅,立方氮化硼以及氧化物(ZnO等)及固溶体等,特别是SiC、GaN和金刚石薄膜等材料,因具有高热导率、高电子饱和漂移速度和大临界击穿电压等特点,成为研制高频大功率、耐高温、抗辐照半导体微电子器件和电路的理想材料;在通信、汽车、航空、航天、石油开采以及国防等方面有着广泛的应用前景。另外,III族氮化物也是很好的光电子材料,在蓝、绿光发光二极管(LED)和紫、蓝、绿光激光器(LD)以及紫外探测器等应用方面也显示了广泛的应用前景。随着1993年GaN材料的P型掺杂突破,GaN基材料成为蓝绿光发光材料的研究热点。目前,GaN基蓝绿光发光二极管己商品化,GaN基LD也有商品出售,最大输出功率为0.5W.在微电子器件研制方面,GaN基FET的最高工作频率(fmax)已达140GHz,fT=67GHz,跨导为260ms/mm;HEMT器件也相继问世,发展很快。此外,256×256GaN基紫外光电焦平面阵列探测器也已研制成功。特别值得提出的是,日本Sumitomo电子工业有限公司2000年宣称,他们采用热力学方法已研制成功2英寸GaN单晶材料,这将有力的推动蓝光激光器和GaN基电子器件的发展。另外,近年来具有反常带隙弯曲的窄禁带InAsN,InGaAsN,GaNP和GaNAsP材料的研制也受到了重视,这是因为它们在长波长光通信用高T0光源和太阳能电池等方面显示了重要应用前景。

以Cree公司为代表的体SiC单晶的研制已取得突破性进展,2英寸的4H和6HSiC单晶与外延片,以及3英寸的4HSiC单晶己有商品出售;以SiC为GaN基材料衬低的蓝绿光LED业已上市,并参于与以蓝宝石为衬低的GaN基发光器件的竟争。其他SiC相关高温器件的研制也取得了长足的进步。目前存在的主要问题是材料中的缺陷密度高,且价格昂贵。

II-VI族兰绿光材料研制在徘徊了近30年后,于1990年美国3M公司成功地解决了II-VI族的P型掺杂难点而得到迅速发展。1991年3M公司利用MBE技术率先宣布了电注入(Zn,Cd)Se/ZnSe兰光激光器在77K(495nm)脉冲输出功率100mW的消息,开始了II-VI族兰绿光半导体激光(材料)器件研制的高潮。经过多年的努力,目前ZnSe基II-VI族兰绿光激光器的寿命虽已超过1000小时,但离使用差距尚大,加之GaN基材料的迅速发展和应用,使II-VI族兰绿光材料研制步伐有所变缓。提高有源区材料的完整性,特别是要降低由非化学配比导致的点缺陷密度和进一步降低失配位错和解决欧姆接触等问题,仍是该材料体系走向实用化前必须要解决的问题。

宽带隙半导体异质结构材料往往也是典型的大失配异质结构材料,所谓大失配异质结构材料是指晶格常数、热膨胀系数或晶体的对称性等物理参数有较大差异的材料体系,如GaN/蓝宝石(Sapphire),SiC/Si和GaN/Si等。大晶格失配引发界面处大量位错和缺陷的产生,极大地影响着微结构材料的光电性能及其器件应用。如何避免和消除这一负面影响,是目前材料制备中的一个迫切要解决的关键科学问题。这个问题的解泱,必将大大地拓宽材料的可选择余地,开辟新的应用领域。

目前,除SiC单晶衬低材料,GaN基蓝光LED材料和器件已有商品出售外,大多数高温半导体材料仍处在实验室研制阶段,不少影响这类材料发展的关键问题,如GaN衬底,ZnO单晶簿膜制备,P型掺杂和欧姆电极接触,单晶金刚石薄膜生长与N型掺杂,II-VI族材料的退化机理等仍是制约这些材料实用化的关键问题,国内外虽已做了大量的研究,至今尚未取得重大突破。

3光子晶体

光子晶体是一种人工微结构材料,介电常数周期的被调制在与工作波长相比拟的尺度,来自结构单元的散射波的多重干涉形成一个光子带隙,与半导体材料的电子能隙相似,并可用类似于固态晶体中的能带论来描述三维周期介电结构中光波的传播,相应光子晶体光带隙(禁带)能量的光波模式在其中的传播是被禁止的。如果光子晶体的周期性被破坏,那么在禁带中也会引入所谓的“施主”和“受主”模,光子态密度随光子晶体维度降低而量子化。如三维受限的“受主”掺杂的光子晶体有希望制成非常高Q值的单模微腔,从而为研制高质量微腔激光器开辟新的途径。光子晶体的制备方法主要有:聚焦离子束(FIB)结合脉冲激光蒸发方法,即先用脉冲激光蒸发制备如Ag/MnO多层膜,再用FIB注入隔离形成一维或二维平面阵列光子晶体;基于功能粒子(磁性纳米颗粒Fe2O3,发光纳米颗粒CdS和介电纳米颗粒TiO2)和共轭高分子的自组装方法,可形成适用于可光范围的三维纳米颗粒光子晶体;二维多空硅也可制作成一个理想的3-5μm和1.5μm光子带隙材料等。目前,二维光子晶体制造已取得很大进展,但三维光子晶体的研究,仍是一个具有挑战性的课题。最近,Campbell等人提出了全息光栅光刻的方法来制造三维光子晶体,取得了进展。

4量子比特构建与材料

随着微电子技术的发展,计算机芯片集成度不断增高,器件尺寸越来越小(nm尺度)并最终将受到器件工作原理和工艺技术限制,而无法满足人类对更大信息量的需求。为此,发展基于全新原理和结构的功能强大的计算机是21世纪人类面临的巨大挑战之一。1994年Shor基于量子态叠加性提出的量子并行算法并证明可轻而易举地破译目前广泛使用的公开密钥Rivest,Shamir和Adlman(RSA)体系,引起了人们的广泛重视。

所谓量子计算机是应用量子力学原理进行计的装置,理论上讲它比传统计算机有更快的运算速度,更大信息传递量和更高信息安全保障,有可能超越目前计算机理想极限。实现量子比特构造和量子计算机的设想方案很多,其中最引人注目的是Kane最近提出的一个实现大规模量子计算的方案。其核心是利用硅纳米电子器件中磷施主核自旋进行信息编码,通过外加电场控制核自旋间相互作用实现其逻辑运算,自旋测量是由自旋极化电子电流来完成,计算机要工作在mK的低温下。

这种量子计算机的最终实现依赖于与硅平面工艺兼容的硅纳米电子技术的发展。除此之外,为了避免杂质对磷核自旋的干扰,必需使用高纯(无杂质)和不存在核自旋不等于零的硅同位素(29Si)的硅单晶;减小SiO2绝缘层的无序涨落以及如何在硅里掺入规则的磷原子阵列等是实现量子计算的关键。量子态在传输,处理和存储过程中可能因环境的耦合(干扰),而从量子叠加态演化成经典的混合态,即所谓失去相干,特别是在大规模计算中能否始终保持量子态间的相干是量子计算机走向实用化前所必需克服的难题。

5发展我国半导体材料的几点建议

鉴于我国目前的工业基础,国力和半导体材料的发展水平,提出以下发展建议供参考。

5.1硅单晶和外延材料硅材料作为微电子技术的主导地位

至少到本世纪中叶都不会改变,至今国内各大集成电路制造厂家所需的硅片基本上是依赖进口。目前国内虽已可拉制8英寸的硅单晶和小批量生产6英寸的硅外延片,然而都未形成稳定的批量生产能力,更谈不上规模生产。建议国家集中人力和财力,首先开展8英寸硅单晶实用化和6英寸硅外延片研究开发,在“十五”的后期,争取做到8英寸集成电路生产线用硅单晶材料的国产化,并有6~8英寸硅片的批量供片能力。到2010年左右,我国应有8~12英寸硅单晶、片材和8英寸硅外延片的规模生产能力;更大直径的硅单晶、片材和外延片也应及时布点研制。另外,硅多晶材料生产基地及其相配套的高纯石英、气体和化学试剂等也必需同时给以重视,只有这样,才能逐步改观我国微电子技术的落后局面,进入世界发达国家之林。

5.2GaAs及其有关化合物半导体单晶材料发展建议

GaAs、InP等单晶材料同国外的差距主要表现在拉晶和晶片加工设备落后,没有形成生产能力。相信在国家各部委的统一组织、领导下,并争取企业介入,建立我国自己的研究、开发和生产联合体,取各家之长,分工协作,到2010年赶上世界先进水平是可能的。要达到上述目的,到“十五”末应形成以4英寸单晶为主2-3吨/年的SI-GaAs和3-5吨/年掺杂GaAs、InP单晶和开盒就用晶片的生产能力,以满足我国不断发展的微电子和光电子工业的需术。到2010年,应当实现4英寸GaAs生产线的国产化,并具有满足6英寸线的供片能力。

5.3发展超晶格、量子阱和一维、零维半导体微结构材料的建议

(1)超晶格、量子阱材料从目前我国国力和我们已有的基础出发,应以三基色(超高亮度红、绿和蓝光)材料和光通信材料为主攻方向,并兼顾新一代微电子器件和电路的需求,加强MBE和MOCVD两个基地的建设,引进必要的适合批量生产的工业型MBE和MOCVD设备并着重致力于GaAlAs/GaAs,InGaAlP/InGaP,GaN基蓝绿光材料,InGaAs/InP和InGaAsP/InP等材料体系的实用化研究是当务之急,争取在“十五”末,能满足国内2、3和4英寸GaAs生产线所需要的异质结材料。到2010年,每年能具备至少100万平方英寸MBE和MOCVD微电子和光电子微结构材料的生产能力。达到本世纪初的国际水平。

宽带隙高温半导体材料如SiC,GaN基微电子材料和单晶金刚石薄膜以及ZnO等材料也应择优布点,分别做好研究与开发工作。

(2)一维和零维半导体材料的发展设想。基于低维半导体微结构材料的固态纳米量子器件,目前虽然仍处在预研阶段,但极其重要,极有可能触发微电子、光电子技术新的革命。低维量子器件的制造依赖于低维结构材料生长和纳米加工技术的进步,而纳米结构材料的质量又很大程度上取决于生长和制备技术的水平。因而,集中人力、物力建设我国自己的纳米科学与技术研究发展中心就成为了成败的关键。具体目标是,“十五”末,在半导体量子线、量子点材料制备,量子器件研制和系统集成等若干个重要研究方向接近当时的国际先进水平;2010年在有实用化前景的量子点激光器,量子共振隧穿器件和单电子器件及其集成等研发方面,达到国际先进水平,并在国际该领域占有一席之地。可以预料,它的实施必将极大地增强我国的经济和国防实力。

  • 上一篇:半导体产品工作计划范例(3篇)
  • 下一篇:<矿业企业管理范例(3篇)
  • 相关文章

    推荐文章

    本站专题