关键词:高中学生数列教学思维能力
数学是一门严谨而抽象,科学而不失美感的学科,它对于逻辑推理能力和概括能力等有较高的要求。高中正是学生思维能力培养的关键时期,因而教师在具体的教学中应当注重培养学生的思维能力。只有培养了学生的思维能力,学生才能将数学知识学以致用,真正达到教学的目的。
一、数学思维能力及类型
数学思维能力是数学能力的核心所在,直接决定着学生的解题能力和得分能力。高中数学教学中要注重对学生数学能力的培养,即教师指导学生培养自身的数学思维,用数学的视角看待问题和解决问题。
数学思维能力包括抽象概括能力、逻辑推理能力、选择判断能力、探索能力等多种能力,这些能力都是能在数学学习中直接获得的。本文以数列的教学为例,谈谈教师应当如何培养学生的抽象概括能力、逻辑推理能力等数学思维能力。
二、高中数列教学中学生思维能力的培养
1.抽象概括能力的培养
抽象概括能力在数学中运用甚广,它主要表现在从普通中找出规律,找出差异,建立事物之间的联系等方面。抽象概况能力的运用能帮助学生发现问题的关键和实质,将具体的数学问题概括成某一类数学模型。抽象概括能力是高中学生学习数学、应对高考的必备能力之一,那在高中数学的数列教学中,应当如何着手抽象概括能力的培养呢·笔者认为,可以通过以下方式来达到这种目的。
2.逻辑推理能力的培养
逻辑推理能力所依赖的是严密的思维和强有力的推理。数学的各种运算、定理的证明等都要依赖于推理才能实现。在完整的数学知识的体系中,更是离不开完美、严密的逻辑推理方法。可以说,没有逻辑推理能力就没有数学教学,因此,高中数学的教学要大力培养学生的逻辑推理能力,数列教学也不例外。
在高中数列教学中,教师要积极引导学生培养自身的逻辑推理能力和直觉推理能力。逻辑推理能力让学生的思维更加缜密,考虑事情也更加全面;直觉推理能力则能帮助学生让自身思维变得更加敏捷、灵活而富有创新性。学生的主动思考和积极动脑对于逻辑推理能力的培养意义重大,因此教师在数列单元的教学中要鼓励学生自己去想。同时,在数列教学中,教师应当注意推理过程的教学,如求等比数列的通项式,在已知某等比数列的第二、第四项的情况下,教师应当让学生了解如何一步步求出数列通项,可以先求公比,然后求第一项,再根据公式写出数列的通项。虽然题目简单,但学生能从题目的解答中掌握每一步都要有根据,同时,学生在熟练掌握了解方法之后,就能渐渐缩短解题步骤,但仍要有理有据。这样一来,学生就能在数列的学习中逐步加强自身的逻辑推理能力。
3.选择判断能力的培养
选择判断能力作为数学能力的一个重要方面,表现为对数学推理过程和结论正确与否的判断,也体现在学生对数学方法、数学定理、解题思路的选择等方面。具有较高选择和判断能力的学生,能够在解题时选择适合的方法,运用合理的思路,得出正确的方法。选择判断能力实质上是学生的一种自我反馈能力的体现,它能够帮助学生更快、更准确地作出判断,同时以最简单明了的方式做出正确的解答。既然选择判断能力对于学生来说如此重要,那么教师在高中数列的教学中应当怎样培养和提高学生的这种能力呢·笔者根据自身多年的教学经验,认为可以从以下几点着手。
注重培养学生获取有用信息的能力,这是培养学生选择判断能力的基础。每一道题里都有已知的信息,同时也会有一些有迷惑性或者是搅乱视线的文字,因此,学生要有甄别和提取有用信息的能力。在数列教学中,教师要注意学生信息获取能力的培养。比如,在一些数列的应用题中,尽可能地获取更多的信息就很重要。
请看下面的例子:甲、乙两人分别从相距70米的公园和车站出发,两人同时动身且相向行走。已知甲第一分钟走2m,以后每分钟比前一分钟多走1m,乙每分钟走5m,请问:①甲、乙开始行走后几分钟相遇·②如果甲、乙到对方起点后立即折返,甲继续每分钟比前一分钟多走1m,乙继续每分钟走5m,那么开始运动几分钟后第二次相遇·
在这个例子中,学生就应当先理解题目的意思,读懂题目已知条件和要求。关键信息有70米,相向行走,甲和乙的各自行走速度等,根据这些有用的信息,学生才能够继续做题,列出相应的等式,如假设n分钟后两人相遇,则有:
故第二次相遇是在开始运动后15分钟。
在数列教学中,帮助学生树立起正确的价值理念也是十分有益的,这些价值理念就是学生进行选择和判断的依据。比如达到在最短的时间里得出正确的解,学生在解题过程中应当结合使用数形结合、转换的思想,这一种思想的灌输使得学生下次再碰到类似的题目时能够又好又快地解决。
4.创新思维能力的培养
创新思维能力的培养是建立在抽象概括能力、逻辑推理能力和选择判断能力等基础上的一种创新思维能力。在这一过程中,教师应当不断地鼓励学生大胆假设、验证假设,以及修正假设。具体来说,它要求学生敢于发问、严密论证和积极探索。不仅要对正在探索的问题进行创造性的解释,还要能够举一反三,做到触类旁通。要想培养学生的创新思维能力,在数列教学中教师就应当将学生带入一个未知的领域,从而激发出学生强烈的求知欲,提高他们的学习热情。
数学教学与思维能力的培养有密切的关系,因此教师在高中数列教学中应当注重培养学生的思维能力。
参考文献:
关键词:直觉主义逻辑;数学;可构造性;排中律
中图分类号:B815.9文献标志码:A文章编号:1002-2589(2014)06-0025-02
一、直觉主义逻辑的缘起
按照海丁(Heyting,A.)的说法,“直觉主义数学在于心智的构造,而一个数学定理表达一个经验事实,即是某种构造的结果”,“在事实上,从直觉主义观点看,数学是人类心灵的某些职能的一种研究”[1]。在直觉主义者看来,数学公式是直觉符号系列,它们是心智构造的结果,而定理的证明亦是直觉符号序列可观察到的排列,因而拒绝间接证明。直觉主义者坚持要求构造性定义,即是指出产生被定义对象的方法并且能在有穷步骤内确定其是否具有某种性质。当然,直觉主义者拒绝非构造性的存在证明。于是,对于数学来说,唯一来源于直觉,直觉把概念及推理放在我们眼前而是显得非常直接明白。“这个直觉”不过是一种能力,可以分别处理各种概念以及做出正规的出现于通常思维之中的那些推理。
数学领域直觉主义思潮发端于19世纪80年代,它的先驱者是科伦内科(Kronecker,L.),他认为整数在直观上是清楚的,其他的东西都是人造的,是可疑的。直觉主义逻辑真正奠基人是布劳维尔。在20世纪初,当时现代逻辑尚处于幼年阶段,弗雷格的逻辑主要在数学小圈子里流传,怀特海和罗素的《数学原理》尚未出版,布劳维尔关于逻辑的专门知识也有限。但是,他提出了使当代人震惊的观点,他主张逻辑不居先于数学,相反逻辑依赖与数学。数学的对象是心智构造,而这些对象的性质又是根据心智构造规定的。经典逻辑是从有穷集合及其子集合的数学中抽象出来的,后来人们忘记了这个有限的来源,错误地把逻辑当作高于一切数学的东西,最后又毫无根据地把它应用于无穷的数学上去[2]。布劳维尔认为对有穷集合有效的经典逻辑原则――排中律,不能用于无穷集合。这条规律的一般形式是:对于一个命题p,或者p或者非p,必有一个是真的。也就是说,在数学领域,每个特定的数学问题都能够在这样的含义上得到解决:所提到的问题或者被肯定,或者被否定。让我们通过一个例子来说明。考虑一下哥德巴赫猜想(用G表示):每个偶数都是两个质数的和。
最先用更形式化方法考虑直觉主义逻辑的人是格里文科(Glivenko,V.)和戈尔摩戈洛夫(Kolmogorov,A.N.)。前者提出直觉主义命题逻辑片段,后者则构建直觉主义谓词逻辑片段。1928年海丁独立形式地表述了直觉主义谓词逻辑和算术及“集合论”的基础理论。海丁的形式表述为大胆的逻辑学家开辟了一个新领域,但是他并没有提供一个“标准的”或“预期的”解释。于是,缺少一种概念解释的内在相干性。海丁后来提出一个被称作证明解释的一种解释,它的基本思想可追溯到布劳维尔:数学陈述的真理性是通过证明建立起来的,因而逻辑连结词的意义可借助于证明和构造来说明[3]。例如,通过例子来考察一个逻辑连结词“”:?渍?鬃的一个证明是一个这样的构造,?渍的任何证明都能转化为?鬃的一个证明。
我们注意到,如果把逻辑看作心智构造活动,那么就不能要求一个陈述是二值的,即真的或假的。证明的解释至少非形式地洞察到直觉主义真理的奥秘。也有些逻辑学家考察了直觉主义逻辑和拓扑的闭包运算之间的相似性,构建被称作直觉主义逻辑的拓扑的解释。坚钦于1934年构建了自然演绎系统和他的相继式演算,这使直觉主义连结词的意义比希尔伯特型的形式化表述更加具体。普拉维茨则推广了坚钦的工作。在20世纪30年代,哥德尔独立于坚钦,表述了由经典谓词逻辑到直觉主义谓词逻辑一个片段的转换,推广了格里文科的早期工作。他也建立了模态逻辑系统S4和直觉主义逻辑之间的联系。后来他又表述了论辩的解释,它属于解释的算法类型。论辩的解释和克林的可实现性的解释对于证明论的目标来说是极富有成果的。
二、直觉主义逻辑的基本思想
三、结语
一方面,逻辑哲学中的直觉主义学派高度认可直觉和个人的创造性思维在科学实践中的作用,这具有积极的意义。同时,他们对排中律原则、双重否定原则和德摩根律有效性的质疑,揭示了经典逻辑真理性只是相对的而不是绝对的。另一方面,直觉主义逻辑学家们倡导的构造性证明的能行性的研究方法,促进了人工智能和计算机科学的发展。
参考文献:
[1]Heyting,A.IntuitionismAnIntroduction[M].North.HollandPublishingCompany1956:8-10.
【关键词】归纳逻辑/休谟问题/概率/贝叶斯主义
【正文】
一、概述
归纳逻辑是关于或然性推理的逻辑。或然性推理是这样一种推理:当其前提真时其结论很可能真但不必然真。现代归纳逻辑的显著特点就是对或然性推理加以系统化和定量化。本世纪二、三十年代以后,随着数学概率论趋于成熟,概率归纳逻辑得以产生和发展。概率归纳逻辑是应用概率论来系统地研究和表述或然性推理的。本世纪七十年代前后,出现了一种非数学概率论的归纳逻辑理论,这种理论也被称为“非帕斯卡概率归纳逻辑”(参见非帕斯卡概率归纳逻辑)。不过从总体上讲,比起经典的(亦即帕斯卡的)概率归纳逻辑,非帕斯卡概率归纳逻辑还显得比较薄弱,亟待改进和发展。
凡属经典概率归纳逻辑的理论都满足数学概率论的三条公理即:(1)任何事件或命题的概率大于等于0,即p(a)≥0;(2)一个必然事件或命题的概率等于1;(3)对于任何两个互斥的事件或命题a和b,p(a∨b)=p(a)+p(b)。任一事件或命题a的概率p(a)叫做“基本概率”。概率公理系统的逻辑功能就是在给定基本概率之后推导出有关的其他概率来。至于基本概率如何确定,概率公理除了告诉我们,一组互斥且穷举的事件或命题的基本概率之和等于1外,什么也没说。这种情况类似于演绎逻辑。演绎逻辑并没有告诉我们如何得到真前提,其作用仅仅在于我们得到真前提之后保证由此推出的其他命题都是真的。可见,概率公理系统实际上只是演绎逻辑或数学的一个分支。正如怎样获得真前提的问题属于归纳逻辑研究的范围。怎样获得基本概率的问题也属于归纳逻辑研究的范围。因此,确定基本概率的原则属于归纳原则,它与概率公理系统一道构成一个扩充的系统,这个扩充的系统就是概率归纳逻辑系统。采取不同的确定基本概率的原则以及对概率给以不同的解释就导致不同的概率归纳逻辑系统,进而导致不同的概率归纳逻辑学派,其中主要包括经验主义,逻辑主义和主观主义(即贝叶斯主义)。
现代归纳逻辑还面临着一个传统逻辑遗留下来的疑难问题即休谟问题亦即归纳合理性问题。此问题的严重性在于,如果作为经验科学基础的归纳推理没有合理性,那么,人们的科学活动也就成为非理性的行为。对于休谟问题,现代归纳逻辑的各个派别都试图给出解答,但是至今尚未得到一个令人满意的答案。除了休谟问题外,现代归纳逻辑还面临若干悖论,其中包括认证悖论(乌雅悖论)、绿蓝悖论(新归纳之谜)和抽彩悖论,它们分别由当代逻辑学家和哲学家亨佩尔(c.g.hempel)、古德曼(n.goodman)和凯伯格(h.e.kyburg)提出。这些悖论的共同特点是,从人们通常公认的原则或原理出发,却得出逻辑矛盾或与常识相违的结论。对于这些悖论能否给出恰当的解决,是衡量一种归纳理论是否恰当的重要标志。
出于解决休谟问题、归纳悖论以及其他归纳疑难的企图,本世纪六、七十年代出现了一种新的思潮即局部归纳逻辑。局部归纳逻辑不同于整体归纳逻辑的地方在于,它不要求对一切非演绎的原则或知识进行辩护,而只要求对那些在科学家们看来已经成为问题的原则或知识进行辩护。这意味着,如果科学家们对诸如简单枚举法这些最常用的归纳原则的合理性没有产生疑问的话,那么,哲学家们也大可不必为此操心。可见,局部归纳逻辑在很大程度上是绕过休谟问题以及其他一些疑难问题的。尽管局部归纳逻辑对于现代归纳逻辑的发展起了相当大的促进作用,但是如此宽泛的局部化使其哲学价值受到怀疑。主观主义亦即贝叶斯主义概率归纳逻辑走了一条介于局部归纳逻辑和整体归纳逻辑之间的道路,而且近年来其发展势头仍然不减甚至愈来愈猛,显示出一个进化的研究纲领的某些特征。在笔者看来,贝叶斯主义概率归纳逻辑代表着现代归纳逻辑的发展趋势。下面就对有关问题分别加以简要的讨论。
二、休谟问题
休谟问题也叫做归纳问题,是由十八世纪的英国哲学家休谟(d.hume)提出来的,它在现代归纳逻辑中仍然是核心问题之一,并且至今尚未得到令人满意的解决。休谟提出的问题是:归纳法具有理性的依据吗?如何为归纳法的合理性进行辩护?休谟本人的回答是:为归纳法的合理性进行辩护是不可能的,因此归纳法没有合理性,只不过是人的一种心理本能。休谟的理由大致是:一切推理可以分为两类,一类是关于观念间的推理,具有必然性;另一类是关于经验事实的推理,具有或然性。归纳法是要根据过去发生的事情推断将来要发生的事情,既然过去和将来之间没有逻辑上的必然性,所以不能用前一种推理为它进行辩护;但也不能用后一种推理为它进行辩护,否则就会出现循环论证。在概率归纳逻辑中,休谟问题转化为:如何为确定基本概率的原则进行辩护?对此问题,不同的学派采取了不同的论证方式或思路,但有一种趋向似乎是共同的,即为归纳法的实用合理性进行辩护。实用合理性与真理性之间并无直接关系,而是与人的主观目的性直接相关的:如,为归纳法的渐近性、简单性或可避免大弃赌等性质进行辩护均属关于实用合理性的辩护。尽管这些辩护还存有这样或那样的缺陷,但却是富有启发性的;至于从实用合理性的角度为归纳法辩护是否最终取得成功,则有待进一步的研究。笔者在拙作《归纳逻辑与归纳悖论》(1994年)中也对休谟问题提出一种尝试性的解决方案。
三、经验主义概率归纳逻辑
经验主义概率归纳逻辑主要是由莱欣巴赫(h.reichenbach)于本世纪三十年代提出的,后由萨尔蒙(w.salmon)等人给以进一步的发展。在此理论中,概率被定义为相对频率的极限。具体地说,在关于某一事件a的无穷序列中,如果被观察的某一特征b出现的相对频率fn(b,a)趋向某一极限l,那么,l就是b相对于a的概率,记为:
lim
p(b,a)=
f[,n](b,a)=l
n∞
由于这种定义下的概率涉及到事件的无穷序列,所以是不可能被直接观察到的,只能由渐近认定的方法来得到。渐近认定的方法是一个不断修正的过程即:当观察次数n为一有限数n[,1]时,观察到特征b出现了m[,1]次,便认定概率p(b,a)就是相对频率m[,1]/n[,1];当n增加到n[,2]时,相对频率变为m[,2]/n[,2],那么便重新认定p(b,a)就是m[,2]/n[,2];以此类推,直到n充分大。这种渐近认定方法并不假定事件的无穷序列一定存在极限,但它仍然是合理的,因为,如果不存在极限,用任何方法都找不到极限,反之,如果存在极限,那么用这种方法便一定能够找到。这就是说,对于寻找频率极限,渐进认定方法不会比其他方法差而只会比其他方法好。渐近认定方法的这种合理性与真理性并无直接关系,因此常常被称为“实用的合理性”。然而,具有这种实用合理性的渐近认定规则并非只此一种,而是有无数种,它们可被统一地表述为:给定fn(b,a)=m/n,则推得
lim
f[,n](b,a)=m/n+c(当n∞,则c0)
n∞
显然,上面提及的那种渐近认定方法只是当c为常数0时的特例,比起其他一般的渐近认定方法,它的优越性亦即合理性仅仅在于它的简单性;这能否成为对休谟问题的一种恰当解决,乃是一个有争议的问题。此外,把概率定义为无穷序列的频率极限,从根本上讲是不适用于单个事件或有限多个事件的,这一事实威胁到此定义的恰当性,也是此理论所面临的一个疑难问题。
四、逻辑主义概率归纳逻辑
逻辑主义概率归纳逻辑起源于凯恩斯(j.m.keynes)和杰弗里斯(h.jeffreys)等人,不过其代表人物当推卡尔纳普(r.carnap),他于本世纪四、五十年代系统地建立起这一理论,后由欣蒂卡(j.hintikka)等人给以改进和发展。该理论把概率定义为假设h相对于证据e的认证度(thedegreeofconfirmation),记为c(h,e)。c(h,e)仅仅表达了h和e这两个命题之间的某种逻辑关系,而对h和e各自的真假毫无断定,因此对它的确定只需进行语义分析,而无需与事实相对照。该理论是建立在一个简单的语言系统之上的,该语言仅由个体常项、一元谓词和逻辑常项构成,而且其数目都是有限的;这样便可形成一些对所有个体的各种性质同时有所断定的语句即“状态描述”,而其他任一语句的概率都可根据状态描述的概率从逻辑上加以确定。问题的关键在于如何确定各个状态描述的概率,对此,卡尔纳普先后采取了不同的方法和态度。它开始将无差别原则直接用于状态描述,从而给各个状态描述以相等的概率;后又改为将无差别原则用于所谓的结构描述,最后又建立了一个“归纳方法连续统”,允许用无数多种方法对状态描述赋予概率;至于一个人如何在这诸多的归纳方法中加以选择,则取决于他在实用上甚至在直觉上的理由。这样一来,卡尔纳普便在很大程度上放弃了原先的逻辑主义主张,在很大程度上转入主观主义的阵营。
五、主观主义概率归纳逻辑
主观主义概率归纳逻辑也叫做私人主义(personalism)或贝叶斯主义(bayesianism)概率归纳逻辑。此理论发端于本世纪三十年代,其创始人是拉姆齐(f.p.ramsey)和菲耐蒂(definetti)。在此理论中,概率被解释为一个人的合理的主观置信度。主观置信度是人的内省经验,为了使之具有可测度性,它又被定义为一个人关于某一命题的
d[,1]真实性所愿接受的最大赌商,即:p(a)=───────,这里d[,1]
d[,1]+d[,2]代表某人关于命题a的真实性进行打赌时所愿下的最大赌金,d[,2]是其对手所下的赌金。该理论的一条重要定理即大弃赌定理(thedutchbooktheorem,有文献译为“荷兰赌定理”)表明,一个人要能避免大弃赌,当且仅当,他的最大赌商满足概率论公理。所谓大弃赌是这样一种,无论所赌的那个命题是真还是假,赌者都要输钱。显然,导致大弃赌的赌商以及相应的置信度是不合理的;这表明,把概率解释为一个人的合理置信度是恰当的。该理论的另一条重要定理是意见收敛定理,它表明,如果按照贝叶斯定理来不断地修正验前概率,那么,无论验前概率是怎样的,验后概率终将趋于一致;这样,验前概率的主观性和任意性就成为无关紧要的,因为它们终将淹没在验后概率的客观性和确定性之中。一个人对被检验假设的验前概率是由他当时的背景知识决定的,这表明主观主义具有局部归纳逻辑的特征;同时,主观主义又要求按照贝叶斯定理用检验结果不断地修正验前概率,从而使局部化的程度及其影响降至最低。可见,主观主义走了一条介于整体归纳逻辑与通常的局部归纳逻辑之间的道路。
意见收敛定理也是对休谟问题的一种解答,然而,哈金(i.hacking)指出,贝叶斯定理仅仅是关于条件概率的,而非关于验后概率的,因为从逻辑上讲,验后概率可以不等于条件概率。把验后概率等同于条件概率,这是主观主义概率归纳逻辑的一个预设,其合理性有待进一步的辨护。在这方面,拙作《归纳逻辑与归纳悖论》作出一定的努力。
六、贝叶斯定理
贝叶斯定理是概率论的一个定理,它在现代归纳逻辑中常常扮演着重要的角色,因为它提供了一种计算假设的验后概率的方法。贝叶斯定理的表达式是:
在p(e)>0和p(h[,i])>0的条件下,如果h[,1],h[,2],…,h[,n]是互斥且穷举的,那么,
p(h[,j])p(e/h[,j])
p(h[,j]/e)=─────────────(1≤j≤n)
n
∑p(h[,i])p(e/h[,i])
i=1
此等式左边的条件概率p(h[,j]/e)一般被称为被检验假设h[,j]相对于证据e的验后概率(上面提到,哈金已指出此说法并不严格),等式右边分子中的p(h[,j])表示h[,j]的验前概率,p(e/h[,j])表示h[,j]对e的预测度(或似然度);类似地,分母中的p(h[,i])和p(e/h[,i])分别表示该组假设中的任一假设h[,i]的验前概率亦即主观概率和对e的预测度。根据贝叶斯定理,在对一个假设进行检验的时候应当满足以下几个要求:(1)至少存在另一个竞争假设,即n≥2;(2)这n个假设中至少并且至多有一为真;(3)任何一个竞争假设的验前概率大于0而小于1;(4)证据的无条件概率大于0。应当说,这些要求对于科学检验的实际过程来说都是合理的;并且有文献表明,满足这些要求对于解决归纳逻辑的一些疑难问题是必要的。由于贝叶斯定理给各个竞争假设的验前概率亦即主观概率留有发挥作用的余地(对之只有很弱的限制即大于0而小于1),从而成为从假设的验前概率过度到验后概率的桥梁。这使得它在现代归纳逻辑中,尤其在主观主义概率归纳逻辑中起着重要的作用,这就是主观主义概率归纳逻辑又被称为贝叶斯主义的原因。
七、无差别原则
无差别原则也叫作“不充分理由原则”,其内容是:对于任何两个事件或命题a和b,如果我们关于它们的知识是无差别的,亦即我们没有理由认为其中一个比另一个更有可能发生,那么,我们就应当对它们赋予相等的概率,即p(a)=p(b)。无差别原则在古典概率论中起着重要的作用,因为概率的古典定义是:
a所包含的基本事件的数目
p(a)=─────────────
全部基本事件的数目
基本事件的特征之一是具有等概性,而这种等概性就是由无差别原则确定的。无差别原则在现代归纳逻辑中也起着重要的作用,这在逻辑主义概率归纳逻辑中是十分明显的。无差别原则在很大程度上具有主观性和任意性,因为在一定意义上它是基于人们对两个事件或命题的相等的无知,这势必导致某些荒谬的结论。正因为此,现代归纳逻辑的另一些学派都尽量避免使用无差别原则。但是,这种努力是否成功,还是一个值得研究的问题。不过有一点是可以肯定的,即使保留无差别原则,也必须对它的使用条件或使用范围加以限制。
八、相关变项法
相关变项法(therelatedvariablesmethod)是由英国逻辑学家和哲学家科恩(j.cohen)于本世纪70年代提出来的。它的新颖之处在于试图给出一个分级的而非连续的归纳支持测度。这种分级归纳测度的现实根据在于,科学家们为检验一个科学假设而进行的科学实验是经过精心策划的和有限的,而不是盲目的和无限多的,科学家们设计实验的基本方法就是逐一改变与被检验假设相关的变项及其组合。例如,对于“蜜蜂能辨别颜色”这一假设的检验来说,相关的变项包括:蜜蜂所追逐的目标的排列位置,目标的气味,等等;这些变项可以分别记为:v[,1],v[,2],……v[,n];其中每一变项又包括若干变素(即变项的值),如气味这一变项所包含的变素有:甜味、苦味、酸味,等等;变项v[,i](1≤i≤n)的k个变素可记为:v[1][,i],v[2],…,v[k][,i]。由于各个变项对于被检验假设的相关性程度是有所不同的,相应地,它们对于检验的重要性也就有所不同。相关变项v[,1],v[,2],…,v[,n]是依其重要性程度由小到大的次序来排列的。为检验一个具有“所有r都是s”这种形式的假设,实验可以按照如下方式来安排。实验t[,1]:改变相关变项v[,1],让它依次在k[,1]个变素中取值,其他变项均保持不变,这样就构成k[,1]个子实验,从而构成一个实验完备组,即“规范实验”;如果假设没有通过这个规范实验,那么检验到此为止,否则,继续进行实验t[,2];以此类推,直到实验t[,n]。请注意,构成实验t[,2]的一组于实验并非仅由改变v[,2]的变素决定的,而是由改变v[,1]的k[,1]个变素和v[,2]的k[,2]个变素的组合决定的。显然,t[,2]包含了t[,1],这使得如果一个假设通过了t[,2],那它就一定通过了t[,1],但反之不然。这种关系适合于任何两个实验t[,j]和t[,i](j>i)。在进行t[,1]之前,被检验假设已经具有一定的支持度,否则它就没有被检验的价值;因此可以说,被检验假设首先通过t[,0]。这样,n个相关变项便构成包含t[,0]在内的n+1个规范实验,从而使被检验假设的支持度可以分为n+1个级别。如果一个假设h通过t[,i],而没有通过t[,i]+1,
i+1那么它就获得第i+1级的支持,其支持度记为s(h,e[,i])=────,
n+1,其中e[,i]是关于t[,i]的证据报告。当假设h通过t[,n]时,其支持度便达到1。科恩宣称,此方法是对培根和穆勒的传统排除法的发展和精制;不过,此方法还面临一些有待克服的困难。
九、非帕斯卡概率归纳逻辑
“非帕斯卡概率论”这个概念首先由科恩于1977年正式提出,但对它的研究可以追溯到沙克尔(g.shackle,1949)。所谓帕斯卡(pascal)概率论就是经典概率论;它有一条定理即:p(@①h)=1-p(h),此定理叫做“否定律”,也叫做“互补律”。但是,此定理在非帕斯卡概率论中不成立,而代之以另一条定理即:如果p(h)>0,则p(@①h)=0。科恩的非帕斯卡概率归纳逻辑是对其归纳支持理论的简单扩展,即把一个普遍概括的归纳支持度移植到它的某个特殊事例上。前面谈到,归纳支持理论是以相关变项法为其语义模型的,因此,科恩的非帕斯卡概率如同支持度也是分级的而非连续的。具体地说,如果假
i+1设“所有r是s”获得的支持度是───,那么某一具有性质r的特殊
n+1
i+1
i+1事例a具有性质s的概率也是─────,记为:p(sa,ra)=──。
n+1
n+1由于非帕斯卡概率不满足经典概率的互补律,这使得,任何一个假设如果曾经获得大于0的支持度,那么它就永远不会被彻底否定:更有甚者,如果一个假设曾经在实验t[,i]中获得较高的支持度如4/5,那么,t[,i]以后的任何否证性实验t[,j]都不能使之降低一丝一毫。应该说,这一结论是与科学检验的实际情况相违的。总之,与帕斯卡概率论相比,非帕斯卡概率论以及相应的归纳逻辑无论从语法上还是从语义上都显得不够成熟,亟待改进和发展。
十、局部归纳逻辑与整体归纳逻辑
局部(local)归纳逻辑是于本世纪六七十年代在归纳逻辑研究范围内兴起的潮流之一,其代表人物是科恩、莱维(i.levi)等。局部归纳逻辑是相对于整体(global)归纳逻辑而言的,而且同归纳逻辑的辩护问题直接相关。休谟把对一切或然性推理即归纳推理的辩护归结为对简单枚举法的辩护,他论证了简单枚举法的合理性得不到辩护,因此一切归纳推理都得不到辩护。休谟这里所要求的辩护是一种整体的辩护,即除演绎推理原则以外的任何原则或知识都需要辩护。以整体辩护为目标的归纳逻辑就是整体归纳逻辑。卡尔纳普和莱欣巴赫等人的归纳逻辑均属此类。与此不同,局部归纳逻辑只要求对归纳推理作局部的辩护。以科恩的相关变项法为例,它是以相关变项及其相关程度的知识为前提的,至于这种知识是如何得到的,此问题则超出归纳逻辑的范围,正是需要哲学家们向科学家们请教的,而不是相反;事实上,对于一个成熟的科学共同体来说,有关相关变项的意见往往是一致的,因而无需哲学家们节外生枝地对此提出质疑。用莱维的话来讲:“在科学中,仅当在具体的研究语境中产生了辩护的需要,关于信念的辩护才成为必要的。”现在一般认为,休谟所要求的那种关于归纳逻辑的整体辩护是不可能达到的,只能达到局部辩护,问题在于局部化的程度。应当说,一种归纳逻辑理论的局部化程度越低,其哲学价值越高。在许多学者看来,科恩和莱维等人所主张的归纳逻辑的局部化程度太高了,几乎等于对休谟问题的回避,因而是不能令人满意的。相比之下,贝叶斯主义归纳逻辑的局部化程度要低得多。
【参考文献】
〔1〕c.howson&p.urbach,scientificreasoning——thebayesianapproach,chicago:opencourtpublishingcompany,1989.
〔2〕r.j.bogdan,localinduction,dordrecht:reidel,1976.
〔3〕m.hesse,thestructureofscientificinference,berkeley:universityofcaliforniapress,1974
〔4〕w.c.salmon,thefoundationsofscientificinference,pittsburgh:universityofpittsburghpress.1967.
〔5〕h.reichenbach,thetheoryofprobability,berkeley:universityofcaliforniapress,1949.
〔6〕l.j.savage,thefoundationsofstatistics,newyork:johnwileyandsons,inc.1954.
〔7〕i.hacking,'slightlymorerealisticpersonalprobability',inphilosophyofscience,vol.34,1967.
〔8〕b.de.finetti,‘foresight:itslogicallaws,itssubjectivesources’,instudiesinsubjectiveprobability,editedbyh.e.kyburg,jr.,andh.e.smokler,newyork:johnwileyandsons,inc.1964.
〔9〕camap,logicalfoundationsofprobability,chicago:universityofchicagopress,1950.
〔10〕r.carnap,thecontinuumofinductivemethods,chicago:universityofchicagopress,1952.