360作文网

目前温室效应状况范例(3篇)

栏目:报告范文

目前温室效应状况范文

[关键词]医院楼宇自控系统设计

引言

新乡市中心医院是豫西北最大的综合性医院,集医疗、教学、预防、科研、康复等职能为一体。为了更好的服务于病患人员,新乡市医院不断完善医院硬件设施的配备和医疗卫生环境的建设。外科手术楼建设过程中引进TECHCON智能控制系统,旨在对楼内空调、通风、给排水以及动力等系统进行集中管理和监控,以满足医患对于楼内温度、湿度、通风等环境条件的严格要求,减少患者因空气不洁(带菌)而引起感染的几率,缩短治疗周期,提高治愈率。此举将打造一个全新的智能化诊疗空间,全面提升医院的服务水准,并且在提高医院服务水平的基础上尽量节约能源,达到服务和能源双优的效果。

一系统结构

1、管理网2、服务器3、通讯适配器4、工作站5、主控模块6、站点连接总线7、集线器0、打印机Techcan04系统网络结构分三层结构,最底层为模块连接总线,中间层为站点连接总线,最上层为管理网。其中模块连接总线用来连接主控模块和1/0模块,它的网络拓扑为基于CAN物理层总线结构,通讯速率为57600bps。中间层站点连接总线同样采用CAN物理层,通讯速率为3840Gbps。站点连接总线在物理层上采用CANBUS标准,链路层参照BACnet的定义规则,可以连接64个主控制器,站点通讯速率为38400bps。这种通讯连接方式,特别适合楼字控制系统,通常一个建筑的通讯网络一个网段就可以解决。每个主控制器通过模块连接总线最多可以管理15个1/0模块,这些模块可以通过连接线缆延伸1200米完成数据的交互不月采用任何附加设备(例如专用底座,专用电源模块等)。在新乡医院采用了新型的CAN集线器解决大型系统的通讯问题,它打破了传统的“一”字型拓扑结构的限制,可以形成星形、树形等复杂的拓扑网络结构。借助CAN集线器,站点连接总线可以实现4层范围内的网段延伸,每个CAN网段的距离最长可达1.2公里,因此,CAN型站点连接总线可以实现5公里范围内的数据通讯。

通过这种网络拓扑结构,系统在不借助以太网的情况下就可以轻松完成几十平方公里的覆盖工作。在新乡医院直接采用CAN集线器直接将系统划分为2个网段,一条总线直接管理地下室设备,另一条总线管理地上部分的机电设备。通过这种划分使得系统布局变得非常清晰,同时还留有一条总线最为冗余,如果有需要可以随时敷设通讯线缆来减少改造的投资。

二模块特点

在现在主流控制系统中都存在各种各样的I/O模块,但是综合性I/O模块种类却不是很多,在新乡中心医院,采用了Techcon系列多种点位合理的新型模块,具体情况如下表:

在点表中我们可以看到1个GCA模块正好可以完整地管理一台新风机组;1个MCAg正可以控制4台水泵或送风机并且对相关的反馈进行监视;1个MCC模块除了控制两台电机以外还可以管理相应的液位:1个VDA模块可以控制4个双DO蝶阀并且无论阀门采用DI反馈还是AI反馈均可以得到很好的监视。在项目中针对系统特点采用对应的专业I/O模块,很大程度上节省了投资费用,并且主要设备采用1到2个模块就可以完成对其设备的控制,并且在布置上有很好的可复制性和参考性。由于系统一个主控模块可以携带15个I/O模块。那么在配制的时候般只管理]。个I/O模块,通过这种手段使得系统形成真正意义上的冗余,如果甲方提出新的要求或者在设计时遗忘的部分,可以非常轻松的弥补而不需要破坏原有系统格局。

三特殊的控制工艺

新乡中心医院采用的是半集中式空调系统,这种方式对于像新乡医院这种大型医院和手术室同时使用率高的场所非常适合。这种方式是将手术部和住院部空调系统划分为几个区,高级别空调系统由于风量大、使用频率相对较低,采用了单独设置空调机组,低级系统则由几个房间共用同一空气处理系统,新风集中处理后送到各个系统的空调机组,为了使整个手术部始终处于受控状态,工程中设有值班风机,在非工作状态仅开值班风机维持手术部的压力梯度。这种系统形式可以方便的调解各个房间的温湿度,使得不同压力级别的调解相互不产生影响,又能够比较好的实现整个手术部的压力控制。

新乡中心医院每层分布一至两台洁净空调机组,洁净空调机组与常规组合式空调机组区别很大涉及的监控设备主要涵盖;回风温度、回风湿度,初效过滤器堵塞报警、新风初效过滤器堵塞报警、中效过滤器堵塞报警、高效过滤器堵塞报警、冷盘管水温调节、热盘管水温调节、蒸汽加湿器控制、新风门开度控制、回风门开度控制、送风机运行状态、送风机手/自动控制状态、送风机前后压差、送风机启/停控制、送风机故障状态、送风机故变频控制信号、手术室温湿度、手术室微正压、回风机运行状态、回风机故障状态、回风机前后压差,回风机启/停控制、回风机手/自动控制状态、防冻开关等设备。对于ICU和手术室以及病房的环境控制方案,作者在设计时进行了比较充分的考虑,采用的生物洁净技术该变了过去直接杀灭室内的病源微生物的思路,注重消除或控制危及无菌空间的影响因素,形成一整套技术措施。主要体现在以下几个方面:

1、正确的温湿度控制

在多数规范中只给出了温湿度的范围,温度22℃~25℃和相对湿度30%~60%,作者在设计和调试的时候也是根据此值进行的调整,但是在试运行期间和运行的服务期间发现有很多的设定值需要调整,绝不可一概而论。

在和院方的交流中了解到合适的空调对于治疗和调养有促进作用,甚至在一些场合是重要的治疗方法,然而不同的患者对于空调的要求往往差异很大,例如甲亢患者无法忍受高温和潮湿,慢性肺病患者由于分泌物堆积且黏度增大。需要吸入热,湿空气来有效的防治脱水。烧伤的病人需要有较高的环境要求,房间温度一般调节至32℃和相对湿度95%;心脑血管患者在凉爽、干燥的房间可以得到很好的治疗。

由于各种病房对于温度要求区别较大,并且病人对环境的要求也不一样。在对病房控制的时候。作者根据实际使用情况对空调进行了分区,在使用功能

相近的区域采用闭环控制算法,满足区域内基本需要的病人,对有特殊需要的病人,利用室内的加热或局部加湿等手段满足患者的需要。

2、空气过滤

工程中采用了3级空气过滤,根据国家标准GB/T14295-93,空气过滤器一共分为五个级别,在此项目中采用了初效、中效和高效过滤器。但是在实际使用过程中,工程中的高效过滤器的效果基本相当于国标中的高中效过滤器下表为工程中采用的3效过滤器的性能:

由于细菌不能够独立存活必须依附在较大的浮游颗粒上,通过过滤这些载有微生物的粒子进行过滤后就可以达到除去细菌的目的。过滤器过滤空气就是除去这些细菌最为经济和有效的方法。

3送风量

按照国际相关标准规定的送风量范围大致为允许回风的手术室送风量为20~25次/h。这一标核准相当于国标GB50333-2002《医院洁净手术不建筑技术规范》中川级洁净手术室。在现在提出的一般手术室概念。从净化原理讲对于末端过滤器为高中效过滤器的手术室来说,加大送风量无益于改善室内状况。作者考虑带全新风设定最小气次数为6次/h,在此项目中,应当根据室负荷来确定送风量,但是送风量一般要不得低于6次/h换气,一般控制在6~8次/h。这个水平相当于国外创伤手术室的送风换气要求。在对空调进行控制时采用焓值控制来确定所允许的最小送风量,具体计算方法举例如下:室内状态点N,干球温度tN=25.5℃,相对湿度φ=50%,iN=51.9kJ/kg;室外状态点W,干球温度tW=33℃,湿球温度tWS=27.9℃,iW=89.7kJ/kg,新风比0.252,送回风在处理前混合至C点,tC=27.1℃,iC=59.5kJ/kg。由夏季热湿比ε=2000,由N点沿热湿比线交φ=95%相对湿度于S点露点送风,tS=12.5℃,得N点与S点焓差Ai=iN-iS=51.9-33.4=18.5kJ/kg,而根据夏季冷负荷和总送风量得需要焓差Q/G=1s5kJ/kO,所以预设定的换气次数太少。通过反算出G=Q/‘,=896m3/㈠,换气次数在67次/小时(新风比。252)适合露点送风,这样就可以取得最小的风量。

4正压

在新乡医院手术室控制中为了维持其无菌状态考虑了正压问题。通过安装在手术室内的微正压传感器来影响房间正压控制,甚至要维持手术室内洁净级别不同的区域之间维持合理的气流流向和有序的压力分布,以避免室外对室内。低级别对高级别环境的影响。只有保证在任何’隋况下(特别是在非设计工况或在非正常运行的工况下),都能够维持洁净手术部内这种有序的梯度压力分布不变,才能真正有效的减少手术区交叉感染的风险。到目前为止,关于负压隔离病房的负压值,我国相关设计规范中尚无明确规定,国标《传染病医院建筑设计规范》(讨论稿)也没有明确标出具体的负压值。

在调试过程中,正压具体作用体现在三个方面首先在门窗关闭的情况下。防止洁净室外的污染由缝隙渗入洁净室内,其次在门开启的瞬间保证有足够的气流向外流动。减少门开启或人进入的瞬间带来的干扰气流,但不保证在门长时间开启的状态下的正压,最后保证洁净区域内合理、有序的气流流向与流量。在新乡医院中,作者在试运行和运行中,将负压隔离病房病室与缓冲间的最小静压差设定为SPa,病室与卫生间的最小静压差设定为4Pa,缓冲间与医务人员工作走廊及半污染区与清洁区之间的最小静压差设定为4Pa达到了比较好的效果。同时也得到了院方的认可。工程设计、调试体会由新乡中心医院引申到医院类楼控系统首先顾及的还是通讯问题。在利用良好的总线拓扑完成系统搭建后,整个工程的重点就是医院所面临的特殊需求,室内环境对病人的康复有良好的辅助作用。同时能有效的回避交叉感染。

结语

在国家规范中,只规定了清洁区送风量大于排风量清洁区为正压,污染区排风量大于送风量,为负压,并要求负压房间排风量最小应比送风量大10%(风量差应不小于85m3/h)。规范中并没有规定各区域需保持正负压的值而且也没有对建筑的围护结构、门窗的密封程度做出具体要求。在具体的设计和调试方案确立时,没有微压差设定值依据,只能在实践调试和试运行中进行调整。对于实际的调试效果也很难得到检验,只能通过理论推算。同时在施工和运行过程中只靠送排风风量差而不对房间的气密性做出具体要求时,很难保证压力梯度的实现。

参考文献:

目前温室效应状况范文

[关键词]卷烟厂空调系统节能

1.概述

卷烟生产工艺和生产设备对车间环境有较为严格的要求,要求全年保持恒温恒湿。车间生产环境直接影响烟丝含水率、产品的品质、物料消耗以及卷烟机的有效作业率。

卷烟厂空调的主要特点为:

(1)卷烟厂整个生产过程从制丝、贮丝到卷、接、包(卷烟、接过滤嘴、包装),各个环节都要求在恒温、恒湿的环境中进行。全厂空调面积大,空调系统需全年运行。

(2)卷烟生产设备发热量大,空调送风量大,一般在43×104m3/h以上。空调设备运行能耗高,空调设备能耗占全厂总能耗的20%~35%。为达到卷烟生产条件的要求,同时实现空调节能的目的,西昌分厂进行了技术改造,本文结合空调系统的技改工程,对其中的节能措施加以分析和介绍。

2.空调的多工况分区

本工程的空调系统全部采用智能化控制,由中央监控室对所有空调设备(包括冷水机组、水泵、冷却塔、空调机组等)进行远程集中监控,可随时掌握各车间温、湿度变化以及设备运行状况。车间的空调系统采用全年多工况分区节能控制,根据被控车间的热湿负荷特性和当地室外气象条件,自动将全年分成若干个工况区域,每个工况区域内制订出一个最合理、最节能的温湿度控制模型,有效的解决了系统高位平衡和降低了系统无效功耗,实现空调系统节能运行。分区工况按照理想工况制定,即不考虑室内热湿负荷变化,在实际控制中,控制器将根据实际情况与理想状况的偏差利用PID计算公式自动修正。

图1空调工况分区图

图1为空调系统全年运行工况分区图,图中四边形的阴影面积为室内空气温湿度的允许波动范围。其中黄色的阴影部分面积是全新风区。O为送风状态点;N为室内状态点;M点在NO延长线上,为m%(最小新风比)=NO/NM。tO、iN线分别与气象包络线相交于a、b点;iN、dO线分别与相对湿度φ=95%的机器露点曲线相交于e、f点;dO线和iN线相交于k点。这些等焓线、等温线、等含湿量线和OM线把室外气象区划分成五区域。见下表1。

在Ⅰ、Ⅱ、Ⅲ区域内

上图中细线为机组加湿能力线,例如:根据西昌分厂空调机组设计其中KB1、KB2的加湿能力为293Kg/H,如当室外气候点处于该线左侧时就应考虑尽量减少新风量,以减少加湿负荷,假设现在为极限情况,全新风运行,则293Kg/H的加湿能力无法将空气处理到送风状态所要求的O点对应的d0线上,故必须有室内回风加以混合,此时对新风与回风的比例可用PID进行调节,其混合比的约束条件是混合后的状态点应处于细线右恻,再进行蒸汽等温加湿即可将其拉至送风点。因此必须检测混风段的温湿度,并将其作为混风比的PID控制值。

其中Ⅰ区中:尽量通过新回风比将混风拉至tO温度线上,湿度控制在加湿能力线内,再等温加湿到送风状态点O;此区域控制执行器为新回风阀、加湿阀。

Ⅱ区中:通过新回风比将混风状态拉至细线内,但需小比例开制冷阀将空气冷却至tO温度线上,再等温加湿到送风状态点O;其小比例开水阀保证表冷温度>露点温度。此区域控制执行器为新回风阀、制冷阀、加湿阀。

Ⅲ区中,采用最小新风,满足车间卫生要求,经制冷、加湿至送风状态点O;此区域控制执行器为新回风阀、制冷阀、加湿阀。

Ⅳ区:高温高湿工况,采用最小新风,制冷与除湿同时进行,将表冷器温度降至露点温度,此区域控制执行器为新回风阀、制冷阀。

Ⅴ区,低温高湿,采用全新风,此时需大量除湿,将空气冷却至露点,由于温度低于送风温度,故需开启加热阀辅助加热;此区域控制执行器为新回风阀、制冷阀、加热阀。

综上所述:在什么样的状态可以大量利用新风节能,应在tN线以下,加湿能力线与dO线之间,以及Ⅴ区域内,可大量应用新风。

3.空调的变风量运行

所­有空调机组的送、回风机均由变频器控制,实现变风量运行。

图2是典型的卷烟厂空调夏季空气状态变化过程示意图,图中N点为室内状态点,S点为送风状态点。空调系统采用定风量运行,当室内负荷下降时,室内状态点由N点变化为N′点(温度下降,相对湿度增高),此时自控系统会自动开启加热,使送风状态点S变化为S′,室内状态点由回N′到N点。如果采用变风量运行,不但可以避免冷热抵销,而且大大降低风机运行能耗[1]。

图2变风量工况下空气状态变化过程示意图

3.1变风量运行时回风机风量的确定

由于车间设有除尘系统,机械排风量(Lp)较大,需要利用新风补偿排风,新风量Lf=Lp。在设计工况下空调机组回风机的风量为:

LR=LsLf=LS-Lp(1)

式中LS―在设计工况下送风机送风量,m3/h;

Lf―在设计工况下新风量,m3/h。

在变风量工况下,当送风机风量由Ls变化为L′s(对应的供电频率为f′s),此时回风机的回风量

L′R=L′S-Lp(2)

L′R=LR(f′R/f0)(3)

式中L′R―在变风量工况下回风机风量,m3/h;

L′S―在变风量工况下送风机风量,m3/h;

f′R―在变风量工况下回风机供电频率,Hz;

f0―在设计工况下供电频率,f0=50Hz。

由公式(3)可以计算出回风机变频器对应的供电频率。

3.2保持新风量恒定的措施

如果照此运行,由于送风机转速下降,在新回风混合室的负压会相应变小(即通过新风阀的压差变小由ΔP变化为ΔP′),新风量会相应下降。为保持新风量不变,此时应采取的措施是按照新风阀的阻力特性,开大风阀的角度,减小新风阀的阻力。在变风量工况下,新风通过新风阀的阻力(即混合室负压值)为:

式中ΔP′―在变风量工况下,通过新风阀的阻力;

ζ′―调整后的新风阀局部阻力系数;

v0―在设计工况下新风口风速,m/s。

通过ζ′的下降,让v0保持不变,新风量保持恒定。上述一切措施均可在PLC(可编程控制器)中,预先编入控制程序加以实现。

4.结论

(1)本文所介绍的空调节能措施已在工程中应用,取得良好的节能效果,与传统的控制方式相比,可降低运行能耗15%~20%。上述措施也适用于其他的空调工程。

(2)本文所介绍的只是卷烟厂空调节能的部分措施,其他的节能控制方案(如冷却水系统变水量运行、空调水系统的大温差运行、车间排风的热回收等)可进一步研究并加以推广应用。

(3)传统的制丝车间空调采用局部岗位送风。为减少烟叶破碎率,目前许多卷烟厂都改用全面空调。制丝车间是产热车间,空调负荷大、送风量大、空调能耗高。制丝车间应采用何种节能的空调方式是制丝工艺和空调专业相关人员今后应深入研究的重要问题。

目前温室效应状况范文篇3

然而在实施建筑节能的过程中,会遇到各种各样的情况:当各种节能宣传资料、通知发往各公共建筑、各级公共机构和相关人员手中后,由于各种各样的原因,下班后电脑还是未被正常关闭,照明灯光也没有按时熄灭,空调依然在规定温度范围以外运行,打印机等办公设备闪亮着的电源指示灯表明它依然在运行之中,尽管三令五申强烈要求相关人员做到节能行为规范,可收效甚微。

因此依赖于传统人力监督的方式很难达到节能计划所希望的目标,只有将人力监督和科学技术统一起来,才能达到最佳的节能效果。圣特丽科技潜心研发的建筑节能智能化控制系统能辅助您进行有效的节能监督和管理,帮助您真正达到节能降耗的目的。

下面就圣特丽建筑节能智能化控制系统的优势、适用环境及节约能源效率进行逐一介绍。

系统具有优势

1.技术先进,节约投资

圣特丽建筑节能智能化控制系统是结合了先进的计算机技术、通信技术和自动化控制技术,采用开放的以太网传输标准,将各种受控电器的工作状态上传至中心机房,并由计算机自动统一处理后实现对电器的控制。该项技术居国际领先水平,完全实现无人值守、自动控制、实时监测记录,能最大程度地节约宝贵的人力监督资源。

2.施工简单,安装方便

该系统包含采集控制模块(空调状态采集控制模块采用86底盒安装、灯光控制模块采用120底盒安装)和一套管理软件(32个控制空间内的可直接用液晶键盘),系统建设造价低廉。下端信号采用RS485传输,只需简单布线(单根四芯线即可),上端信号采用TCP/IP协议的传输方式,直接利用建筑现有的局域网,非常适合旧式建筑的改造施工和新建建筑的统一施工。

3.性能稳定,控制精确

该系统属于圣特丽智能家居系统的一个分支系统,获得“CCC”认证证书,一直以来在无人值守机房使用,自动实现机房温湿度的采集和控制、灯光自动控制功能。能检测房间温度变化值为0.06℃,能精确控制空调温度变化值为1℃。

4.功能强大,实时性强

可集中实时查看/控制照明灯光状态和空调运行状态,实时显示房间环境温度,可实现温度和照明自动/手动控制,温度超过设定温度范围时可输出声光报警。所有控制均由配套的计算机软件进行参数设置,开放性好,可根据不同的环境条件进行不同的设置。

系统可满足需求

1.对空调的实时监控

目前公共建筑对空调的控制比较粗放,控制环节薄弱。根据国务院办公厅指示:包括国家机关、社会团体、企事业组织和个体工商户,除医院等特殊单位以及在生产工艺上对温度有特定要求并经批准的用户之外,夏季室内空调温度设置不得低于26℃,冬季室内空调温度设置不得高于20℃。《公共机构节能条例》第三十条又强调指出:公共机构应当严格执行国家有关空调室内温度控制的规定,充分利用自然通风,改进空调运行管理。可见,对空调系统的节能控制迫在眉睫。

圣特丽建筑节能智能化控制系统对所有空调的控制均由后台服务器设定,可设定夏季模式、冬季模式等多种模式,在夏季模式里将最低温度设定为26℃,最高温度设定为30℃,最低报警温度设定为16℃,最高报警温度设定为40℃。当温度在26-30℃内变化时,服务器根据设定条件参数自动调整空调的运行状态。当温度高于40℃或者低于16℃时,会输出报警信号,提示被控房间温度失常,系统管理员需要根据情况作相应处理。同样,在冬季模式里将最高温度设定为20℃,最低温度设定为16℃。最高报警温度25℃,最低报警温度-3℃。还可以根据情况设定多种季节模式,所有温度设定值均是全开放的,由管理人员根据环境要求进行灵活设置。

2.对照明用电的实时监控

根据《公共机构节能条例》第三十二条指出:公共机构办公建筑应当充分利用自然采光,使用高效节能照明灯具,优化照明系统设计,改进电路控制方式,推广应用智能调控装置,严格控制建筑物外部泛光照明以及外部装饰用照明。目前,各种公共建筑对照明的控制并没有完全实现智能化,特别是旧式建筑,多采用人工控制的方式,比如下班后关闭电源,一般管理员都需要每个房间逐一检查,以确认所有需要关闭的电源都正常关闭,以防能源浪费和发生火灾。这种传统的人工控制方式存在很多漏洞,管理员很难对每条线路进行检查,难免有疏忽遗漏。

圣特丽建筑节能智能化控制系统对照明用电的控制非常方便,当使用该系统灯光控制模块后,在服务器上即可实时显示各路灯光的使用情况,管理员只需要在服务器上根据情况控制各路灯光即可;也可灵活设置各种条件参数,比如下午6点下班后,自动关闭所有办公室的灯光。该系统集中控制和本地控制相互并存,当集中控制时,不影响本地开关的使用。

系统节能

根据目前该系统在某旧式办公楼节能改造项目中的运用情况,简述该系统的节能效率。本办公楼拥有办公室57间,所有办公室均安装空调控制系统和灯光控制系统。由于所建年代较早,所使用的空调品牌有很多种,每间办公室的照明用电功率为300W左右,空调功率1.5匹。要求做如下控制:根据国务院办公厅文件要求,对各办公室的室温做监测,保证室内温度夏季不低于26℃,冬季不高于20℃,下班后自动关闭所有空调,服务器能实时监测空调运行状态。同时要求集中查看和控制各办公室的照明回路状态,要求下班后自动关闭所有照明设备。

根据严格测算,在夏季时段,该办公楼安装圣特丽建筑节能智能化控制系统后,每天每台空调平均可缩短用电时间为1.5小时,按空调平均功率1.5匹约1100W计算,每台空调可节省用电为1.65KW左右。同时,由于温度控制在26-30℃之内,每台空调制冷量又可大幅减少,平均每天节约用电2KW左右。相当于每天每台空调节约3.65KW,所有空调每天节约用电57X3.65=208.5KW,同时照明用电平均每办公室每天节约用电时间为0.5小时,所有照明节约用电57X0.3X0.5=8.55KW,总计每天可节约用电217.05KW,按每年正规工作日251天计算,每年可节省用电54479.55KW。此计算过程还不包括极端气候及节假日所节约的电量。

  • 上一篇:温室效应的产生原因范例(3篇)
  • 下一篇:温室效应的治理措施范例(3篇)
  • 相关文章

    推荐文章

    本站专题