关键词:电力系统;继电保护;微机保护;安全措施
前言:
现今电力系统,已经发展为跨区、跨国联网、高度自动化运行的现代化系统。目前,我国的全国性联网也已逐步实现。大电网互联将对电力系统运行带来一系列新问题。电力系统高速发展和新技术的应用,也给电力系统保护与控制带来了新的挑战。尽管现代电网的设计运行技术近些年取得了长足发展,但仍不能完全避免大电网瓦解事故的发生。因此,寻求电网更为有效的保护及控制措施,确保互联电力系统的安全稳定运行是我们面临的又一重要课题。当前分布式发电技术的发展和应用,使得电源结构和分布发生改变,电力系统将因电源原动机特性和电源分布的不同而影响其性能,要求我们进一步研究相应的系统控制策略,开发新的继电保护与控制装置,从而改善系统运行特性,避免电力系统事故的发生。
在电力系统中,继电保护的作用在于:当被保护的电力系统元件发生故障时,该元件的继电保护装置迅速准确地给距离故障元件最近的断路器发出跳闸命令,使故障元件及时从电力系统中断开,以最大限度地减少对电力元件本身的损坏,降低对电力系统安全供电的影响,从而满足电力系统稳定性的要求,改善继电保护装置的性能,提高电力系统的安全运行水平。随着电力系统规模不断扩大和等级的不断提高,系统的网络结构和运行方式日趋复杂,对继电保护的要求也越来越高。
1继电保护的概念及类型
1.1继电保护的基本概念
继电保护装置就是在供电系统中用来对一次系统进行监视、测量、控制和保护的自动装置。它能反应电力系统中电气元件发生故障或不正常运行状态,并使断路器跳闸或发出信号。其基本任务是自动、迅速、有选择性地将故障元件从电力系统中切除,使故障元件免于继续遭到破坏,保证其它无故障部分迅速恢复正常运行。另外,它还能反映出电气元件的不正常运行状态,并根据运行维护的条件,发出信号、减负荷或跳闸。
1.2继电保护的类型
在电力系统中,一旦出现短路故障,就会产生电流急剧增大,电压急剧下降,电压与电流之间的相位角发生变化。以上述物理量的变化为基础,利用正常运行和故障时各物理量的差别就可以构成各种不同原理和类型的继电保护装置,如:反映电流变化的电流继电保护、定时限过电流保护、反时限过电流保护、电流速断保护、过负荷保护和零序电流保护等,反映电压变化的电压保护,有过电压保护和低电压保护,既反映电流变化又反映电流与电压之间相位角变化的方向过电流保护,用于反应系统中频率变化的周波保护,专门反映变压器温度变化的温度保护等。
2配电系统继电保护的要求
配电系统继电保护在技术上一般应满足四个基本要求,即可靠性、选择性、速动性和灵敏性。这几个特性之间紧密联系,既矛盾又统一,必须根据具体电力系统运行的主要矛盾和矛盾的主要方面,配置、配合、整定每个电力元件的继电保护。
2.1可靠性
可靠性是对继电保护性能的最根本要求。可靠性主要取决于保护装置本身的制造质量、保护回路的连接和运行维护的水平。一般而言,保护装置的组成元件质量越高、回路接线越简单,保护的工作就越可靠。同时,正确地调试、整定,良好地运行维护以及丰富的运行经验,对于提高保护的可靠性具有重要的作用。继电保护的误动和举动都会给电力系统造成严重的危害。然而,提高不误动的安全性措施与提高不拒动的信赖性的措施是相矛盾的。由于不同的电力系统结构不同,电力元件在电力系统中的位置不同,误动和拒动的危害程度不同,因而提高保护安全性和信赖性的侧重点在不同情况下有所不同。因此,要在保证防止误动的同时,要充分防止拒动;反之亦然。
2.2选择性
继电保护的选择性,是指保护装置动作时,在可能最小的区间内将故障从电力系统中断开,最大限度地保证系统中无故障部分仍能继续安全运行。这种选择性的保证,除利用一定的延时使本线路的后备保护与主保护正确配合外,还必须注意相邻元件后备保护之间的正确配合。
2.3速动性
继电保护的速动性,是指尽可能快地切除故障,其目的是提高系统稳定性,减轻故障设备和线路损坏程度,缩小故障波及范围,提高自动重合闸和备用电源或备用设备自动投入的效果等。一般从装置速动保护、充分发挥零序接地瞬时段保护及相间速断保护的作用,减少继电器固有动作时间和断路器跳闸时间等方面入手来提高速动性。
2.4灵敏性
继电保护的灵敏性,是指对于其保护范围内发生故障或不正常运行状态的反应能力。满足灵敏性要求的保护装置应该是在规定的保护范围内部故障时,在系统任意的运行条件下,无论短路点的位置、短路的类型如何,以及短路点是否有过渡电阻,当发生断路时都能敏锐感觉、正确反应。以上四个基本要求是评价和研究继电保护性能的基础,在它们之间,既有矛盾的一面,又要根据被保护元件在电力系统中的作用,使以上四个基本要求在所配置的保护中得到统一。
3微机保护的特点
传统的电磁和电磁感应原理的保护存在动作速度慢、灵敏度低、抗震性差以及可动部分有磨损等固有缺点。晶体管继电保护装置也有抗干扰能力差、判据不准确、装置本身的质量不是很稳定等明显的缺点。随着计算机技术和大规模集成电路技术的飞速发展,微处理器和微型计算机进入实用化的阶段,微机保护开始逐渐趋于实用。
微机保护充分利用了计算机技术上的两个显著优势:高速的运算能力和完备的存贮记忆能力,以及采用大规模集成电路和成熟的数据采集,A/D模数变换、数字滤波和抗干扰措施等技术,使其在速动性、可靠性方面均优于以往传统的常规保护,而显示了强大的生命力,与传统的继电保护相比,微机保护有许多优势,其主要特点如下:
(1)改善和提高继电保护的动作特征和性能,正确动作率高。主要表现在能得到常规保护不易获得的特性;其很强的记忆力能更好地实现故障分量保护;可引进自动控制、新的数学理论和技术,如自适应、状态预测、模糊控制及人工神经网络等,其运行正确率很高,已在运行实践中得到证明。
(2)可以方便地扩充其它辅助功能。如故障录波、波形分析等,可以方便地附加低频减载、自动重合闸、故障录波、故障测距等功能。
(3)工艺结构条件优越。体现在硬件比较通用,间隔内部和间隔间以及间隔同站级间的通信用少量的光纤总线实现,取消传统的硬线连接。总体来说,综合自动化系统打破了传统二次系统各专业界限和设备划分原则,改变了常规保护装置不能与调度(控制)中心通信的缺陷,给变电所自动化赋予了更新的含义和内容,代表了变电所自动化技术发展的一种潮流。随着科学技术的发展,功能更全、智能化水平更高、系统更完善的超高压变电所综合自动化系统,必将在中国电网建设中不断涌现,把电网的安全、稳定和经济运行提高到一个新的水平。继电保护技术的未来发展趋势应是向微机化、网络化、智能化,保护、控制、测量、计量、数据通讯一体和人机智能化方向发展。
4确保继电保护安全运行的措施
(1)继电保护装置检验应注意的问题:在继电保护装置检验过程中必须注意:将整组试验和电流回路升流试验放在本次检验最后进行,这两项工作完成后,严禁再拔插件、改定值、改定值区、改变二次回路接线等工作网。电流回路升流、电压回路升压试验,也必须在其它试验项目完成后最后进行。在定期检验中,经常在检验完成后或是设备进人热备状态,或是投入运行而暂时没负荷,在这种情况下是不能测负荷向量和打印负荷采样值的。
(2)定值区问题:微机保护的一个优点是可以有多个定值区,这极大方便了电网运行方式变化情况下的定值更改问题。但是还必须注意的是定值区的错误对继电工作来说是一大忌,必须采用严格的管理和相应的技术手段来确保定值区的正确性。采取的措施是,在修改完定值后,必须打印定值单及定值区号,注意日期、变电站、修改人员及设备名称,并重点在继电保护工作记录中注明定值编号,避免定值区出错。
(3)一般性检查:不论何种保护,一般性检查都是非常重要的,但是,在现场也是容易被忽略的项目,应该认真去做。一般性检查大致包括以下两个方面:①清点连接件是否紧固、焊接点是否虚焊、机械特性等。现在保护屏后的端子排端子螺丝非常多,特别是新安装的保护屏经过运输、搬运,大部分螺丝已经松动,在现场就位以后,必须认认真真、一个不漏地紧固一遍,否则就是保护拒动、误动的隐患。②是应该将装置所有的插件拔下来检查一遍,将所有的芯片按紧,螺丝拧紧并检查虚焊点。在检查中,还必须将各元件、保护屏、控制屏、端子箱的螺丝紧固作为一项重要工作来落实。
(4)接地问题:继电保护工作中接地问题是非常突出的,大致分以下两点:
①保护屏的各装置机箱、屏障等的接地问题,必须接在屏内的铜排上,一般生产厂家已做得较好,只需认真检查。最重要的是,保护屏内的铜排是否能可靠地接入地网,应该用较大截面的铜鞭或导线可靠紧固在接地网上,并且用绝缘表测电阻是否符合规程要求。
②电流、电压回路的接地也存在可靠性问题,如接地在端子箱,那么端子箱的接地是否可靠,也需要认真检验。
(5)工作记录和检查习惯:工作记录必须认真、详细,真实地反映工作的一些重要环节,这样的工作记录应该说是一份技术档案,在日后的工作中是非常有用的。继电保护工作记录应在规程限定的内容以外,认真记录每一个工作细节、处理方法。工作完成后认真检查一遍所接触过的设备是一个良好的习惯,它往往会发现工作中的疏漏,对于每一位继电保护工作人员来说都应该养成这一良好的工作习惯。
关健词:继电保护意义基本要求发展概况
中图分类号:TM77文献标识码:A文章编号:1672-3791(2012)02(c)-0000-00
1继电保护的意义
电力系统各元件之间是通过电或磁联系的,任一元件发生故障时,会立即在不同程度上影响到系统的运行。因此,切除故障元件的时间常常要求在十分之几秒甚至百分之几秒内。显然,靠运行人员在如此短的时间里发现故障元件并予以切除是不可能的。要完成这样的任务,必须在每一电气元件上安装具有保护功能的自动装置。这种保护装置截止目前,多数由单个继电器或继电器与其附属设备的组合构成,又称为继电保护装置。在电子式静态保护装置和数字式保护装置出现以后,虽然继电器已被电子元件或计算机所代替,但仍沿用此名称。在电力工业部门常用继电保护一词泛指继电保护技术或由各种继电保护装置组成的继电保护系统。
继电保护是指能反应电力系统运行中电气元件发生的故障或不正常运行状态,并依此动作于断路器跳闸或发出信号的一种自动装置。
其基本任务是:
①当故障发生时,自动、迅速、有选择地将故障设备从电力系统中切除,以保证系统其余部分迅速恢复正常运行,并使故障设备不再继续遭到损坏。
②当发生不正常运行状时,自动、及时有选择地发出信号,由运行人员进行处理,或者切除对系统继续运行会引起事故的设备。
可见,继电保护是电力系统必不可少的组成部分,对保证系统安全运行、保证电能质量、防止故障的蔓延及事故的发生,有其极重要的作用。
2继电保护的基本要求
对电力系统继电保护的基本性能要求是选择性、速动性、灵敏性、可靠性。基本要求之间,有的相辅相成,有的互相制约,需要针对不同的使用条件,分别地进行有机协调。
①选择性。选择性是指电力系统发生故障时,保护装置动作时,仅将故障元件从电力系统中切除,使停电范围尽量缩小,以保证电力系统中的无故障部分仍能继续运行。
选择性就是故障在区内就动作,区外不动作,当主保护未动作时,由近后备或远后备切除故障,使停电面积最小。因远后备保护比较完善(对保护装置DL、二次回路和直流电源等故障所引起的拒绝动作均起后备作用)且实现简单、经济、应优先采用。
②速动性。快速地切除故障可以提高电力系统运行的稳定性,减少用户在电压降低情况下的工作时间、限制故障元件的损坏程度,缩小故障的影响范围以及提高自动重合闸备用电源自动投入装置的动作成功率等。因此,在发生故障时,应力求保护装置能迅速动作切除故障。
③灵敏性。灵敏性是指保护装置对其保护区内发生故障或不正常运行状态的反应能力。满足灵敏性要求的保护装置应该是在规定的保护区内短路时,不论短路点的位置、短路形式及系统的运行方式如何,都能灵敏反应。
④可靠性。可靠性是指在规定的保护区内发生故障时,它不应该拒绝动作,而在正常运行或保护区外发生故障时,则不应该误动作。
影响可靠性有内在和外在的因素:
内在:装置本身的质量,包括元件好坏、结构设计的合理性、制造工艺水平、内外接线简明,触点多少等;
外在:运行维护水平、调试是否正确、正确安装。
上述四点基本要求是互相联系而又互相矛盾的。如对某些保护装置来说,选择性和速动性不可能同时实现,要保证选择性,必须使之具有一定的动作时。可以说,继电保护技术就是在不断解决这些联系和矛盾中发展起来的,因此,对继电保护的基本要求是分析、研究、开发各种继电保护装置的基础。
在电力系统中,当确定继电保护装置的配置和构成方案时,还应适当考虑经济上的合理性。应综合考虑被保护元件与电力网的结构特点、运行特点及故障出现的概率和可能造成的后果等因素,依此确定保护方式,而不能只从保护身的投资来考虑。因保护不完善或不可靠而给国民经济造成的损失,一般会大大超过即使是最复杂的保护装置的投资。
实践表明,继电保护装置或断路器有拒绝动作的可能性,因而需要考虑后备保护。实际上,每一电气元件一般都有两种继电保护装置,主保护和后备保护。必要时还另外增加辅助保护。反映整个被保护元件上的故障并能以最短的延时有选择性地切除故障的保护称为主保护。主保护或其断路器拒绝动作时,用来切除故障的保护称为后备保护。后备保护分近后备保护和远后备保护两种:主保护拒绝协作时,由本元件的另一套保护实现后备,谓之近后备;当主保护或其断路器拒动时,由相邻元件或线路的保护实现后备的,谓之远后备。为补充主保护和后备保护的不足而增设的比较简单的保护称为辅助保护。
3继电保护的发展
继电保护技术是随着电力系统的发展而发展的。电力系统的发展,使得系统容量不断增加,电压等级越来越高,系统接线及运行方式越来越复杂。为满足电力系统对继电保护提出的四个基本要求,继电保护也由简单的过电流保护开始,相继出现了方向性电流保护、低电压保护、距离保护、差动保护、高频保护、微波保护、行波保护等。
电力系统继电保护技术的发展,不仅与电力系统的发展密切相关,而且还与电子通信、计算机、信息科学等新技术、新学科的发展有着密切的关系。从20世纪最先出现的感应型过电流继电器,到50年代的晶体管及整流型继电保护,再到80年代的集成电路继电器,无一不反映了当时这些领域的新成果。
随着计算机技术、特别是处理器的迅速发展,微机保护在电力系统中逐步得到应用。自20世纪80年代以来,微机保护经历了几个发展阶段,现在技术已日臻成熟,在我国电力系统得到广泛应用。微机保护具有巨大的计算、分析和逻辑判断能力,有存储记忆功能,可用同一硬件实现不同原理的保护。微机保护除了保护功能外,还兼有故障录波,故障测距,事件顺序记录以及通过计算机与调度交换信息等辅助功能。这些辅助功能方便了保护的调试及事故处理。再加上微机保护本具有自检和互检功能,使保护的可靠性更高,也更易于安装、调试和维护。
参考文献
[1]李晓明.现代高压电网继电保护原理.[M].北京:中国电力出版社,2005.
关键词:继电保护;自动化装置;可靠性分析
中图分类号:TM77文献标识码:A
一、继电保护与自动化装置的工作特点
当电力系统出现故障,比如短路或者过载运行,要保证继电保护装置动作的可靠性,才能及时发送对应的信号,操作其它电气设备将故障点及时切除。而电力系统日常运行过程中发生故障的机率相对较小,因此继电保护装置动作不是很频繁。继电保护装置的故障形式包括拒动故障与误动故障两种,其中拒动故障是指继电保护装置无法在电力系统出现故障时及时、可靠的动作,从而无法将电力系统的故障及时切除,如果继电保护装置故障严重,有可能会导致电力系统的崩溃;而误动故障则是指继电保护装置因自身动作特性不良,或者受到其它干扰因素的影响在系统未发生故障时发出误动作,继电保护的误动也会带来一定的经济损失。而自动化装置的主要作用是针对电力系统中各种设计的运行参数进行实时监测与控制,对于自动化装置而言,其主要的故障形式就是无法保证运行参数的测量、调节、传输与控制的准确性。
二、电力系统中继电保护的基本要求
具体而言,继电保护装置必须满足以下几点基本要求:第一,选择性,一旦供电系统中出现故障,继电保护装置必须能够选择性的切除故障点,首先将与故障点距离最近的断路器切断,保证系统中其它未发生问题的部分可以继续正常运行。第二,灵敏性,通常可以采用灵敏系统对保护装置的灵敏性做出评价,在继电保护装置保护范围内,无论哪个位置发生短路,或者发生何种性质的短路故障,保护装置均不得产生拒动动作,相应的如果保区范围外出现问题,则保护装置不得产生误动作。第三,速动性,即要求保护装置能够在最短时间内将设备故障切除,将短路电流对电气设备的损坏控制在最小程度内,提高系统电压恢复的速度,为电气设备的自启动创造更加有利的条件,且发电机并列运行的稳定性也可以得到有效改善。第四,可靠性,如果无法保证继电保护装置的可靠性,则事故影响会进一步扩大,甚至会成为导致故障发生的根本原因。为保证保护装置动作的可靠性,要进一步保证保护装置在设计方面、整定计算以及安装调试过程中的准确性,并且要进一步保证保护装置的各个组成元件质量可靠,且采取合理的运行维护措施,从而提高保护的有效性与可靠性。
三、继电保护与自动化装置可靠性指标体系
通常继电保护装置无论是构成原理还是输入特征量,均体现出一定的复杂性,基于经济价值角度而言,其属于可维修产口。由于继电保护装置特殊的工作原因,所以必须采用多项可靠性特征量来表征其可靠性指标,当然可靠性指标体系中指标数量不宜过多,也不宜过于复杂。结合我国电力系统的实际情况,根据继电保护的工作特征,可以从以下几个可靠性特征量对继电保护的可靠性做出全面评价:
第一,成功率,即基于特定的条件下产品可以完成特定功能的机率,或者试验成功的机率。第二,平均无故障工作时间或者平均寿命,针对可修复产品而言可以选择平均无故障工作时间,即两次故障之间工作时间的平均值,针对不可修复产品则选择平均寿命,即产品在失效前的平均工作时间,继电保护装置属于可维修产品,因此选择平均无故障工作时间为指标。第三,有效度,通过该指标可以将修复的继电保护与自动化装置运行过程中的可靠性反映出来,还能够在某种程度上反映出整个电力系统运行的可靠性。有效度可以用下式表达:A=TMIBF/(TMIBF+TMTTR)
式中A表示有效度,TMTTR表示平均修复时间,即发现产品出现故障直至修复所需的平均时间,TMIBF则表示平均无故障工作时间。继电保护装置可靠性特征量可以如下图1表示:
电力自动化装置也属于可维修产品,其可靠性特征量包括平均无故障工作时间、平均修复时间以及有效度等。
四、提高继电保护与自动化装置可靠性的措施
(一)提高继电保护的可靠性
具体而言,提高继电保护可靠性运行的主要方法有以下几种:
1冗余设计及优化措施
可以采用硬件冗余可以实现继电保护系统容错的设计要求。所谓容错技术,是指继电保护系统中的某个保护装置即使动作不正确,仍然不会对系统的整体性能产生太大影响。硬件冗余可以有效改善拒动率以及可用度等指标,具体的方法包括并联、备用切换以及多数表决等,而且如果误动率有所恶化,也可以通过硬件冗余显示出来。在实际应用过程中,在选择冗余方式时要与继电保护系统的实际运行情况密切结合,以满足系统各项可靠性指标为前提,通过硬件冗余的优化实现投入最小、保护装置数量最少的运行保护管理目标。
2提高继电保护装置的可靠性
在继电保护可靠运行管理过程中,要对继电保护装置的各项可靠性指标进行准确、合理的计算,在计算继电保护装置运行的正确率时,区外故障的正确不动作也可以包含在内;此外,在电力系统的二次继电保护与自动控制回路中,主要采用继电保护辅助配套装置进行保护,该辅助设备运行的可靠性会对整个继电保护系统运行的安全性产生直接的影响,所以不能忽略辅助装置的可靠性管理,要采取多种有效措施保证其可靠性。
3做好继电保护装置的维护工作
在日常运行管理过程中,要做好继电保护装置的维护工作,才能进一步提高系统工作的可靠性。具体而言要做到以下几个方面:第一,对继电保护装置进行定期检修与查评,具体检修项目包括各类二次设备元件标志、名称是否齐全;检查各类转换开关、按钮与动作等,保证其灵活性,排除接点接触压力不足或者被烧伤等问题;全面检查制室光字牌与红绿指示灯泡,保证其完好性;排除各种盘柜上表计、继电器、接线端子螺钉松动的故障;进一步排除电压互感器与电流互感器二次引线端子的故障;检查配线,是否存在固定卡子脱落的问题;此外,还要排除断路器各个操作机构的异常问题等。在完成继电保护装置的定期查评工作后,还要根据设备的运行状态将其分类:其中一类设备要达到技术状况良好、无运行缺陷、保护系统运行的安全性与经济性的标准;二类设备要达到设备基本完好、允许个别零件存在一般缺陷、不会危及到人身与设备安全的标准;而三类设备则是指存在重大性能问题,直接影响到系统运行的安全性与可靠性。在维护检查过程中,如果发现继电保护存在问题,要在第一时间予以处理,排除隐患;对于一些已经排除缺陷的继电保护装置,则要建立相应的缺隐台账,做好记录,为后续的检修工作提供参考。
(二)提高继电保护自动化装置的可靠性
首先对设备的设定值、初始状态等情况进行全面了解,因为继电保护自动化装置的结构与运行相对比较复杂,其初始设定情况对后续的运行操作会产生重要的影响,可以说评价装置可靠性的一项重要因素就是其原始数据的设定情况,因此在设备投运前要对其相关初始数据进行全面了解,例如技术资料、设计图纸以及其它数据信息等;其次,要对装置的运行情况进行全面的统计与分析,并以此为参考对其运行规律进行总结,因为经过一段时期的运行,任何设备均会出现不同程度的问题,并且运行时间越长,问题就会越突出,所以要对设备中可能出现的问题进行定期检查与排除,提高检修工作的科学性,提高设备的可靠性与安全性;第三,要注意自动化装置的技术更新与改造,以适应不断发展的电力系统,在选择自动化装置时,选用两套生产厂家不同、同时原理也不同的继电保护与自动化装置对线路、母线等进行有效的保护,这样做可以有效减少事故发生的频率,同时也要注意,同一站内不应有太多的保护装置型号。采用全数字化保护系统,其非常规互感器的数字信号以多播方式通过合并单元到过程总线,采样和控制信息存储在过程总线中。第四,使用装置检测器对装置运行的可靠性进行检测。此外,还可用变压器绕组变形测试和红外热成像技术等对设备进行日常监测和保护。
总之,经过相关人员的长期努力,继电保护与自动化装置的可靠性已经得到了显著的提高。相信经过坚持不懈的努力,继电保护与自动化装置的可靠性还会不断提高。
参考文献
[1]毛义.浅谈继电保护自动化中的装置与检修[J].科技创新与应用,2012(10)
关键词:虚拟仪器;微机保护;实验系统
中图分类号:TP391文献标识码:A文章编号:1009-3044(2010)19-5381-02
继电保护装置是一种利用电磁感应原理而发展起来的电力系统保护装置,随着电子技术和网络通信技术的飞速发展,目前已经发展到微机型阶段,并且利用软件技术可以实现由软件技术驱动硬件而实现微机继电保护,这就是目前研究很热的技术――基于虚拟仪器技术的继电保护系统。利用虚拟仪器技术实现的微机继电保护装置,具有传统微机继电保护装置所不具备的优势,例如控制更加安全可靠等。
本论文主要将虚拟技术应用于微机保护实验系统,拟对基于虚拟仪器技术的微机保护系统进行开发,并从中找到可靠有效的微机保护实验方法与建议,并和广大同行分享。
1微机继电保护概述
1.1微机继电保护的基本构成
微机继电保护装置,其基本结构构成与普通的电力保护装置一样,也是有硬件和软件两大部分构成。硬件部分主要由数据采集系统、数据处理系统及逻辑判断控制模块等几个部分构成,主要由数据采集模块负责对电力系统的相关电参数实现检测与采集,并将数据传送至数据处理系统,数据经过运算之后,由逻辑判断控制模块调用软件控制程序,并发出相应的控制信号,驱动保护装置执行保护动作,从而实现电力继电保护的功能。
随着集成电子电路技术的发展,目前发展的微机型继电保护装置,其硬件系统主要由CPU(微处理器)主机系统、模拟量数据采集系统和开关量输入/输出系统三大部分组成,尽管结构构成已经发生一定变化,但其实实现继电保护的基本原理仍是一样的,由模拟量数据采集系统负责相关保护参数的采集,微机继电保护装置是以微处理器为核心,根据数据采集系统所采集到的电力系统的实时状态数据,按照给定算法来检测电力系统是否发生故障以及故障性质、范围等,并由此做出是否需要跳闸或报警等判断。
1.2微机继电保护装置的特点
微机保护与常规保护相比具有以下优点:
1)微机继电保护装置主要由微处理器为核心而构成的硬件系统,因此借助于现代功能强大的微处理器,微机型继电保护装置可以实现一定程度的智能化。
2)相比于传统的机械式硬件实现的硬件保护装置,微机型继电保护装置能够依靠数据采集模块实现对相关参数的检测与采集,整个过程实现数字化流程,这就为继电保护装置的控制功能的稳定性、可靠性提供了技术条件;另一方面,依靠微处理器内部的软件程序,微机继电保护装置能够进行周期性自检,一旦发现自身硬件或者软件发生故障,能够立即实施报警,从而保障了继电保护装置功能的可靠性。
3)传统的机械式硬件实现的硬件保护装置,其保护功能较为单一,仅仅是实现基本的保护功能,动作依靠一次性机械元件完成,一旦该部件发生故障,则整个继电保护装置无法工作;而微机型继电保护装置除了能够利用弱电驱动控制实现继电保护的功能外,还能够依靠数据采集系统对整个电力系统的相关电力参数都实施监测与采集,通过程序的分析,实现对电力系统整体性能的检测,保护功能大大丰富。
4)传统的机械式硬件实现的硬件保护装置,其功能调试复杂,工作量大,而且极容易造成内部晶体管集成电路的失效,而现代微机继电保护装置,依靠内部的核心微处理器,能够开发专用的人机交互系统,利用人机交互系统实现继电保护装置的调试,简单易行,还可以自动对保护的功能进行快速检查。
5)利用微机的智能特点,可以采用一些新原理,解决一些常规保护难以解决的问题。例如,采用模糊识别原理或波形对称原理识别判断励磁涌流,利用模糊识别原理判断振荡过程中的短路故障,采用自适应原理改善保护的性能等。
2基于虚拟仪器的微机保护实验系统开发设计
2.1总体结构设计
本论文探讨的是基于虚拟仪器技术的微机继电保护系统,因此首先面临选择合适的虚拟仪器开发平台的问题,这里选择基于G语言的LabView开发平台是目前国际最先进的虚拟仪器控制软件,集中了对数据的采集、分析、处理、表达,各种总线接口、VXI仪器、GPIB及串口仪器驱动程序的编制。基于虚拟仪器的微机继电保护装置系统,是利用虚拟仪器开发平台,构建虚拟的微机继电保护装置,实现完整的微机继电保护装置的全部功能,并对设计的虚拟继电保护装置进行评估和改进,从而完成微机继电保护系统设计的一种设计手段。
利用虚拟仪器技术进行微机继电保护系统的开发设计,从具体设计流程来说,主要从以下几个环节入手进行总体结构的设计:
根据微机继电保护系统的设计目标、设计功能,列出所需要的相关硬件,构建整体微机继电保护系统结构框架;另一方面,尽量采用模块化的开发设计模式,将微机继电保护系统按照不同的功能环节,设计各功能模块之间的结构关系。
如下图所示,是本论文所探讨的利用虚拟仪器平台所开发的微机继电保护系统结构原理图。这种方式既便于模块的单独调试,节省系统开发周期,又便于系统功能的改变,使系统具有更强的移植与升级功能。
如图1所示,基于虚拟仪器技术的微机保护系统结构主要由一次系统、转换模块、数据采集模块、保护测量模块及保护决策软件系统等几部分构成,一次系统主要负责面向电网系统模拟设置合适的传感器,将相关拟生成电网的二次侧电压、电流信号,信号经过转换、调理电路变换成符合要求的-5V~+5V模拟信号送数据采集模块,数据采集模块主要由DAQ数据采集卡构成,能够自动将模拟产生的模拟电压信号进行A/D转换,并进行初步的数据处理转换再传送给以虚拟微处理器为核心的保护决策模块,最终将生成的继电保护控制决策信号输出到保护策略模块,最终实现微机继电保护系统的功能。
2.2数据采集模块的设计与实现
本文中微机实现的继电保护实验系统输入信号来源于继电保护测试仪,根据保护系统测试输入信号的特点,本论文采用数据采集卡来负责数据的采集与高速传输。
2.2.1数据采集卡的选择
要实现基于虚拟仪器技术平台的微机继电保护系统,一次系统在完成相应电力系统电参数的传感检测之后,数据采集模块要能够按照微机继电保护系统的功能于设计要求实现相应数据的转换与采集,因此,数据采集卡的选择成为整个微机继电保护系统保护功能实现的关键。目前的数据采集卡,主要有12位或16位的DAQ数据采集卡,在具体决定选用12位还是16位的DAQ设备时,主要从采集精度和分辨率这两个指标考虑,可以由给定的系统精度指标衡量出DAQ卡需要的整体精度。
在本论文中,这里选取PCI-1716数据采集卡。PCI-1716是研华公司的一款功能强大的高分辨率多功能PCI数据采集卡,它带有一个250KS/s16位A/D转换器,1K用于A/D的采样FIFO缓冲器。PCI-1716可以提供16路单端模拟量输入或8路差分模拟量输入,也可以组合输入。它带有2个16位D/A输出通道,16路数字量输入/输出通道和1个10MHz16位计数器通道。PCI-1716系列能够为不同用户提供专门的功能。
2.2.2虚拟数据采集程序的实现
在选择了数据采集卡硬件设备之后,需要借助于虚拟仪器平台为整个系统设计虚拟护具采集程序。在具体进行设计时,由系统内部虚拟程序产生数据采集卡锁需要的相应信号,具体来说就是CT、PT信号,因此,在具体编程时,首先将CT、PT信号传输至相应的滤波器,LabVIEW提供了各种典型的滤波器模块,根据需要可以设置成低通、高通、带通、带阻等类型的滤波器;其次,将经过数据滤波处理之后的数据进行输出。数据采集模块的程序如图2所示。
2.3微机保护模块的设计与实现
既然在数据采集模块之后需要进行数据的滤波,尽管LabVIEW提供了各种典型的滤波器模块,但是仍然需要借助于虚拟滤波模块设计专用的滤波算法,而且在微机继电保护系统中,对电力系统的继电保护功能的实现,主要是由相应的滤波保护算法实现的,因此有必要为虚拟微机电力保护系统设计滤波保护算法程序。
本论文采用如下的设计方法对滤波保护算法进行设计:
1)利用LabVIEW自带的滤波器进行数据的排序滤波。
2)按照系统保护功能所需要的数据频带,设置相应的低通、高通、带通、带阻等灯滤波保护功能。按照上述方法,基于虚拟仪器平台的微机继电保护系统,其滤波器输入得到的数据序列,多数是传感器采集到的电参数,如电压和电流,而电压和电流数据是离散的数字量序列,其中包含了大量的谐波干扰信号,因此有必要进行滤波。在本论文中,采用了二级滤波保护算法,即分别进行前置滤波和后置滤波,实现对数据的二级滤波保护,从而提高整个微机继电保护系统的稳定性和可靠性。前置滤波模块如图3所示,后置滤波模块如图4所示。其中前置滤波模块提供了差分滤波器、积分滤波器、级联滤波器、半波和1/4周波傅立叶滤波器、半波和1/4周波沃尔氏滤波器,可以根据需要自行选择;后置滤波模块提供了平均值滤波器、中间值滤波器,也可以自由选择。
3结束语
利用虚拟仪器技术进行微机继电保护装置系统的设计开发,能够很好的避免了实物硬件开发设计所带来的周期较长、调试较复杂以及成本较高等劣势,所有的开发设计任务全部在虚拟仪器平台上完成。本论文将虚拟仪器技术应用到了微机保护装置的设计,对于进一步提高微机继电保护装置的可靠性与稳定性具有优势,同时借助于虚拟仪器技术的开发,能够更好的实现电气继电保护功能的完善与提升。
参考文献:
[1]李佑光,林东.电力系统继电保护原理及新技术[M].北京:科学出版社,2003.
[2]王亮,赵文东.微机继电保护的现状及其发展趋势[J].科技情报开发与经济,2006,16(18):150-151.
[3]张振华,许振宇,张月品.第三代微机保护的设计思想[J].电力自动化设备,1997,17(3):24-25.
【关键词】供电系统;继电保护;应用;维护
现代电力系统是一个由电能产生、输送、分配和用电环节组成的大系统。随着社会经济的迅速发展,电力系统的容量不断扩大,电网结构日趋复杂,电力系统稳定问题日益突出,因此我们应该对电力系统继电保护更加重视起来,以此保障电力系统的安全可靠的运行,为社会经济的发展保驾护航。
一、继电保护的概念和类型
1、继电保护的概念
继电保护装置是当电力系统中发生故障或出现异常状态时能自动、迅速而有选择地切除故障设备或发出告警信号的一种专门的反事故用自动装置。
继电保护系统为多种或多套继电保护装置的组合。继电保护用来泛指继电保护技术或继电保护系统。也常用作继电保护装置的简称,有时直接称为“保护”。
2、常用继电保护类型:
①电流保护:(按照保护的整定原则,保护范围及原理特点)
A、过电流保护――是按照躲过被保护设备或线路中可能出现的最大负荷电流来整定的。如大电机启动电流(短时)和穿越性短路电流之类的非故障性电流,以确保设备和线路的正常运行。
B、电流速断保护――是按照被保护设备或线路末端可能出现的最大短路电流或变压器二次侧发生三相短路电流而整定的。速断保护动作,理论上电流速断保护没有时限。即以零秒及以下时限动作来切断断路器的。
此外还有定时限过电流保护、反时限过电流保护、无时限电流速断等
②电压保护:(按照系统电压发生异常或故障时的变化而动作的继电保护)
主要有过电压保护、欠电压保护和零序电压保护
③瓦斯保护:油浸式变压器内部发生故障时,短路电流所产生的电弧使变压器油和其它绝缘物产生分解,并产生气体(瓦斯),利用气体压力或冲力使气体继电器动作。
④差动保护:这是一种按照电力系统中,被保护设备发生短路故障,在保护中产生的差电流而动作的一种保护装置。
此外还有高频保护、距离保护、平衡保护、负序及零序保护以及方向保护
二、继电保护的配置与应用
1继电保护装置的基本要求
选择性。当供电系统中发生故障时,继电保护装置应能选择性地将故障部分切除。首先断开距离故障点最近的断路器,以保证系统中其它非故障部分能继续正常运行。
灵敏性。保护装置灵敏与否一般用灵敏系数来衡量。在继电保护装置的保护范围内,不管短路点的位置如何、不论短路的性质怎样,保护装置均不应产生拒绝动作;但在保护区外发生故障时,又不应该产生错误动作。
速动性。是指保护装置应尽可能快地切除短路故障。缩短切除故障的时间以减轻短路电流对电气设备的损坏程度,加快系统电压的恢复,从而为电气设备的自启动创造了有利条件,同时还提高了发电机并列运行的稳定性。
可靠性。保护装置如不能满足可靠性的要求,反而会成为扩大事故或直接造成故障的根源。为确保保护装置动作的可靠性,必须确保保护装置的设计原理、整定计算、安装调试正确无误;同时要求组成保护装置的各元件的质量可靠、运行维护得当、系统简化有效,以提高保护的可靠性。
2保护装置的应用
继电保护装置广泛应用于工厂企业高压供电系统、变电站等,用于高压供电系统线路保护、主变保护、电容器保护等。高压供电系统分母线继电保护装置的应用,对于不并列运行的分段母线装设电流速断保护,但仅在断路器合闸的瞬间投入,合闸后自动解除。另外,还应装设过电流保护,对于负荷等级较低的配电所则可不装设保护。变电站继电保护装置的应用包括:①线路保护:一般采用二段式或三段式电流保护,其中一段为电流速断保护,二段为限时电流速断保护,三段为过电流保护。②母联保护:需同时装设限时电流速断保护和过电流保护。③主变保护:主变保护包括主保护和后备保护,主保护一般为重瓦斯保护、差动保护,后备保护为复合电压过流保护、过负荷保护。④电容器保护:对电容器的保护包括过流保护、零序电压保护、过压保护及失压保护。随着继电保护技术的飞速发展,微机保护的装置逐渐投入使用,由于生产厂家的不同、开发时间的先后,微机保护呈现丰富多彩、各显神通的局面,但基本原理及要达到的目的基本一致。
三、继电保护装置的维护
值班人员定时对继电保护装置巡视和检查,并做好各仪表的运行记录。在继电保护运行过程中,发现异常现象时,应加强监视并向主管部门报告。
建立岗位责任制,做到每个盘柜有值班人员负责。做到人人有岗、每岗有人。值班人员对保护装置的操作,一般只允许接通或断开压板,切换开关及卸装熔丝等工作,工作过程中应严格遵守电业安全工作规定。
做好继电保护装置的清扫工作。清扫工作必须由两人进行,防止误碰运行设备,注意与带电设备保持安全距离,避免人身触电和造成二次回路短路、接地事故。对微机保护的电流、电压采样值每周记录一次,每月对微机保护的打印机进行定期检查并打印。
定期对继电保护装置检修及设备查评:①检查二次设备各元件标志、名称是否齐全;②检查转换开关、各种按钮、动作是否灵活无卡涉,动作灵活。接点接触有无足够压力和烧伤;③检查控制室光字牌、红绿指示灯泡是否完好;④检查各盘柜上表计、继电器及接线端子螺钉有无松动;⑤检查电压互感器、电流互感器二次引线端子是否完好;⑥配线是否整齐,固定卡子有无脱落;⑦检查断路器的操作机构动作是否正常。
【关键词】四遥线路光纤纵差保护微机保护装置控制回路二次接线设计
1综述
对于进线线路引自另一个变电站同一电压等级母线的变电站,其进线开关因光纤纵差保护为与上级变电站配合,须与上一级出线开关使用同一厂家、型号的保护装置,而站内原有微机保护系统往往为另一套不同厂家出产,存在进线开关微机保护装置与站内原有微机保护系统不兼容,导致遥测、遥信、遥控、遥调功能无法实现的情况。
针对这一情况,现有的解决方案有以下几种:
(1)在变电站增加与进线保护装置配套的通讯及后台系统,与原有微机保护系统相互独立,专用于进线开关的“四遥”功能的实现。缺点为需增加整套通讯屏及后台监控机,成本过高。
(2)使用不同厂家的保护装置与微机保护系统,其中遥信、遥测功能较易实现,而遥控、遥调的实现需修改通讯协议,定制远动系统终端软件,实现保护装置的正常通讯,从而实现“四遥”功能。缺点是需联系厂家技术人员定制编写通讯协议及后台软件,实现难度较大。
(3)采用不同厂家两套微机保护装置,设计改造控制回路使两套装置分别实现保护跳闸功能和“四遥”功能。此方法仅需在原有基础上增加一台线路保护装置,成本低,实现难度低,且能按计划实现预计功能。
由上可以看出第三种方案具有一定的优势,本文以实例介绍了第三种方案的具体实现方法。下面以南瑞继保RCS-9613CS线路光纤纵差测控保护装置与南自机电PDS-741数字式线路保护测控装置共同控制的同一进线开关柜的控制回路接线为例,分析二次回路接线中出现的问题,并提出了二次接线解决方案,供技术人员参考。
2基本情况
晋煤集团供电分公司凤北35kV变电站两回35kV进线分别引自凤凰山35kV变电站337、338开关,架空线路总长分别为3.253km、3.184km,其进线开关363、364配备光纤差动保护与过流I段、过流II段保护,均采用南自机电PDS-741数字式线路保护测控装置实现。
2013年凤凰山35kV变电站进行了综自系统改造,由原有南京南自机电自动化有限公司的PDS-7000微机保护系统更换为南瑞继保RCS-9000系列装置,为配合上一级变电站,保障线路光纤差动保护的实现,凤北35kV变电站进线开关计划使用南瑞继保RCS-9613CS线路光纤纵差测控保护装置实现进线开关光纤差动及过流保护。由于需要与站内原有南自系统通讯及后台配合,仍使用南自PDS-741数字式线路保护测控装置实现“四遥”功能。需重新设计二次接线来保障两套保护装置的配合运行。
3设计思路及分析
设计原则:与微机保护双重化配置不同,该进线开关柜配备的光纤差动保护与过流保护仍使用同一保护装置实现,接线的基本原则是安全可靠,并兼顾投停、检修的灵活便利。从以往的保护误动事故案例统计分析来看,二次回路的复杂性是造成保护误动的主要原因之一,故两套保护装置间的联线应尽可能少,以减少因二次回路接线复杂造成的保护误动。
将设计思路归纳如下:
3.1总体设计思路
使用南自PDS-741数字式线路保护测控装置实现进线断路器手动合闸、手动跳闸、遥控合闸、遥控跳闸、合位监视、跳位监视、遥测数据上传等“四遥”功能,南瑞RCS-9613CS线路光纤纵差测控保护装置仅用来实现在故障时跳开进线断路器。与上级变电站光纤纵差保护用通讯光缆联入RCS-9613CS装置,原PDS-741装置控制回路尽可能保持完整,将南瑞RCS-9613CS保护跳闸回路接入原PDS-741装置控制回路中实现功能。
3.2直流控制电源与装置信号电源的选择
《国家电网公司十八项电网重大反事故措施继电保护实施细则》中对多重保护的直流电源未做明确规定,由于两套保护装置均使用DC220V电源做为装置电源和操作电源,为简化运行人员投停操作,同时保障不因产生寄生回路使回路中产生环流而引起保护误动作,要求装置信号电源与操作电源分开,两装置的信号电源相互独立。
在本次回路设计案例中,南瑞RCS-9613CS控制回路仅取其保护跳闸出口继电器的常开接点,相当于在PDS-741保护跳闸回路中增加了一个无源接点,因此两保护装置控制回路均使用PDS-741装置的同一操作电源。
同时按《实施细则》要求,独立的保护装置直流回路必须全部取自该保护专用的电源端子对,故采用南瑞RCS-9613CS光纤差动保护跳闸接点无源回路两端必须使用单独的端子接入PDS-741保护跳闸回路中。
3.3防跳回路的选择
两个保护装置均内置防跳回路,为防止两个防跳继电器配合问题出现使防跳继电器动作后无法返回,接线时应只使用其中一个防跳回路,出于减少接线复杂度考虑,使用南自PDS-741数字式线路保护测控装置防跳回路。
按设计要求,南瑞RCS-9613CS实现线路故障时与对侧光纤差动保护装置配合跳开进线断路器功能,防跳继电器(TBJV)、合后位置继电器(KKJ)、跳闸保持继电器(TBJ)及合闸回路、合位、跳位监视回路均不应接入实际使用控制回路中,因此仅使用图1中虚线部分即可实现功能。
图1中,KD为接线端子排,13KD2、13KD9为增加的该回路专用电源端子对,13n4XX为装置背板接线端子,13LP1为RCS-9613CS保护跳闸压板,BTJ为装置内部保护跳闸继电器出口接点。
为防止产生寄生回路,将图1回路两侧与原回路断开,直接接入南自PDS-741装置控制回路操作正电源中。即将图1回路与南自PDS-741装置保护跳闸出口并接,如图1所示。
图1改造后的南自PDS-741控制回路原理图(局部放大)
实际运行中取下南自PDS-741装置原配的保护跳闸压板(1-42XB1),投入南瑞RCS-9613CS保护跳闸压板(13LP1),两套保护装置设置定值相同,由南自PDS-741保护装置发出故障信号,南瑞RCS-9613CS装置实现保护跳闸回路的接通。
3.4装置电压、电流回路
两保护装置电压并接自PT同一绕组,由于光纤差动保护所需CT绕组与过流保护使用CT绕组极性相反,同时按《国家电网公司十八项电网重大反事故措施继电保护实施细则》要求,两保护装置电流分别引自CT相互独立二次绕组。
4实施效果
现晋煤集团供电分公司下属机关35kV变电站、凤北35kV变电站合计4个进线开关全部采用上述接线方式,实现了两套不同厂家保护装置分别独立实现开关柜“四遥”功能与保护跳闸功能,均稳定运行,未出现异常,有效降低了综自改造时的设备购置成本,实现了预计功能,在实践应用中取得了良好地效果。
5结语
随着现场运行的微机保护设备不断更新换代,许多二次回路需根据现场实际情况进行变更,在变更中既要把握重点,又要重视细节,使二次系统真正成为电力系统的安全屏障。
参考文献:
[1]张晓亮,李江龙.谈变电二次设计过程中的细节问题[J].科技情报开发与经济,2006(24):284-286.
论文摘要:通过对我国电力系统继电保护技术发展现状的分析,探讨继电保护的任务和基本要求。从分析当前继电保护装置的广泛应用,提出保护装置维护的几点建议,结合实际情况,探讨继电保护发展的趋势。关键字:继电保护;电力;维护1前言电力作为当今社会的主要能源,对国民经济的发展和人民生活水平的提高起着极其重要的作用。现代电力系统是一个由电能产生、输送、分配和用电环节组成的大系统。电力系统的飞速发展对电力系统的继电保护不断提出新的要求,近年来,电子技术及计算机通信技术的飞速发展为继电保护技术的发展注入了新的活力。如何正确应用继电保护技术来遏制电气故障,提高电力系统的运行效率及运行质量已成为迫切需要解决的技术问题。2继电保护发展的现状上世纪60年代到80年代是晶体管继电保护技术蓬勃发展和广泛应用的时期。70年代中期起,基于集成运算放大器的集成电路保护投入研究,到80年代末集成电路保护技术已形成完整系列,并逐渐取代晶体管保护技术,集成电路保护技术的研制、生产、应用的主导地位持续到90年代初。与此同时,我国从70年代末即已开始了计算机继电保护的研究,高等院校和科研院所起着先导的作用,相继研制了不同原理、不同型式的微机保护装置。1984年原东北电力学院研制的输电线路微机保护装置首先通过鉴定,并在系统中获得应用,揭开了我国继电保护发展史上新的一页,为微机保护的推广开辟了道路。在主设备保护方面,关于发电机失磁保护、发电机保护和发电机-变压器组保护、微机线路保护装置、微机相电压补偿方式高频保护、正序故障分量方向高频保护等也相继通过鉴定,至此,不同原理、不同机型的微机线路保护装置为电力系统提供了新一代性能优良、功能齐全、工作可靠的继电保护装置。随着微机保护装置的研究,在微机保护软件、算法等方面也取得了很多理论成果,此时,我国继电保护技术进入了微机保护的时代。目前,继电保护向计算机化、网络化方向发展,保护、控制、测量、数据通信一体化和人工智能化对继电保护提出了艰巨的任务,也开辟了研究开发的新天地。随着改革开放的不断深入、国民经济的快速发展,电力系统继电保护技术将为我国经济的大发展做出贡献。3电力系统中继电保护的配置与应用3.1继电保护装置的任务继电保护主要利用电力系统中原件发生短路或异常情况时电气量(电流、电压、功率等)的变化来构成继电保护动作。继电保护装置的任务在于:在供电系统运行正常时,安全地。完整地监视各种设备的运行状况,为值班人员提供可靠的运行依据;供电系统发生故障时,自动地、迅速地、并有选择地切除故障部分,保证非故障部分继续运行;当供电系统中出现异常运行工作状况时,它应能及时、准确地发出信号或警报,通知值班人员尽快做出处理。3.2继电保护装置的基本要求选择性。当供电系统中发生故障时,继电保护装置应能选择性地将故障部分切除。首先断开距离故障点最近的断路器,以保证系统中其它非故障部分能继续正常运行。灵敏性。保护装置灵敏与否一般用灵敏系数来衡量。在继电保护装置的保护范围内,不管短路点的位置如何、不论短路的性质怎样,保护装置均不应产生拒绝动作;但在保护区外发生故障时,又不应该产生错误动作。速动性。是指保护装置应尽可能快地切除短路故障。缩短切除故障的时间以减轻短路电流对电气设备的损坏程度,加快系统电压的恢复,从而为电气设备的自启动创造了有利条件,同时还提高了发电机并列运行的
关键词:智能变电站;继电保护配置;智能电网
中图分类号:TM774文献标识码:A文章编号:1009-2374(2013)35-0009-02
智能变电站继电保护,其作用是当电力系统的电气元件发生故障时,继电保护装置及时发出警告信号或发出断路器跳闸命令,以终止这些事件发展的一种自动化措施和设备。继电保护装置是一套完整的措施,以实现这种自动化硬件设备用于保护电器元件。
l智能变电站继电保护配置的现状
智能变电站,即采用先进、可靠、集成和环保的智能设备,以全站信息数字化、通信平台网络化、信息共享标准化为基本要求,自动完成信息采集、测量、控制、保护、计量和检测等基本功能,同时,具备支持电网实时自动控制、智能调节、在线分析决策和协同互动等高级功能的变电站。智能即为人性化,就是把变电站做成像人在调节一样,当低压负荷量增加时变电站送出满足增加负荷量的电量,当低压负荷量减小时,变电站送出电量随之减少,确保节省能源。
目前,智能变电站虽然不多,正在推广阶段,但智能变电站与常规变电站相比,实现了设备状态可视化,通过智能告警、智能防误等智能化高级应用和完善,减少了检修停电和故障停电时间,主要设备的使用周期得以延长,同时占地面积有一定减少,技术优势明显。随着智能化技术的进步、智能设备的大规模生产应用以及智能设备集中采购带来的规模效应,智能变电站的投资将不断下降,智能变电站的投资将和常规变电站的投资基本持平,具有较好的经济性和推广前景。
智能变电站,分为过程层(设备层)、间隔层、站控层。过程层(设备层)包含由一次设备和智能组件构成的智能设备、合并单元和智能终端,完成变电站电能分配、变换、传输及其测量、控制、保护、计量、状态监测等相关功能。间隔层设备一般指继电保护装置、测控装置等二次设备,实现使用一个间隔的数据并且作用于该间隔一次设备的功能,即与各种远方输入/输出、智能传感器和控制器通信。站控层包含自动化系统、站域控制、通信系统、对时系统等子系统,实现面向全站或一个以上一次设备的测量和控制的功能,完成数据采集和监视控制(SCADA)、操作闭锁以及同步相量采集、电能量采集、保护信息管理等相关功能。
2过程层继电保护
2.1线路保护
线路保护装置主要用于各电压等级的间隔单元的保护测控,具备完善的保护、测量、控制、备用电源自投及通信监视功能,为变电站、发电厂、高低压配电及厂用电系统的保护与控制提供了完整的解决方案,可有力地保障高低压电网及厂用电系统的安全稳定运行。可以和其他保护、自动化设备一起,通过通信接口组成自动化系统。全部装置均可组屏集中安装,也可就地安装于高低压开
关柜。
2.2变压器保护
变压器保护装置由储油柜、吸湿器、安全气道、气体继电器、净油器、测温装置6部分组成,集控制、保护、监视、通信等多种功能于一体,是构成智能化开关柜的理想电器单元。该产品内置一个由20多个标准保护程序构成的保护库,具有对一次设备电压电流模拟量和开关量的完整强大的采集功能(电流测量通过保护CT实现)。变压器保护过程层采用分布式配置,具有完整的差动保护功能,用于集中安装和后备保护。
2.3电抗器保护
电抗器,别名电感器,一个导体通电时就会在其所占据的一定空间范围产生磁场,所以所有能载流的电导体都有一般意义上的感性。然而通电长直导体的电感较小,所产生的磁场不强,因此实际的电抗器是导线绕成螺线管形式,称空心电抗器;有时为了让这只螺线管具有更大的电感,便在螺线管中插入铁心,称铁心电抗器。电抗分为感抗和容抗,比较科学的归类是感抗器(电感器)和容抗器(电容器)统称为电抗器,然而由于过去先有了电感器,并且被称为电抗器,所以现在人们所说的电容器就是容抗器,而电抗器专指电感器。
2.4母线保护
电力系统保护是母线保护的重要组成部分。总线是电力系统的重要设备,传输和分配在整个过程中起着非常重要的作用。总线电源系统故障是一个非常严重的故障,它直接影响总线连接的所有设备的运行安全可靠,造成大面积停电或设备严重损坏,对整个电力系统有所损害。随着电力系统技术的不断发展,电网电压水平继续上升,母线保护的可靠性、快速性、灵敏性、选择性要求也越来
越高。
2.5采样同步方法
对于变电站的保护和母线保护可以被看作是一个多终端的线路保护。使用相同的线路保护解决方案,同时保护装置实现同步采样站。国内常用的同步技术基于乒乓原理主要有两种类型:采样数据校正方法和采样时间的调整
方法。
3智能变电站继电保护配置的展望
3.1基于广域信息的电网保护
目前,国内电网继电保护的理解一般只是一个未能去除断层线,电源线作为PMU(相量测量单元)的出现和发展通信技术,基于广域电网信息网格的保护成为一个研究热点,它实际上在国际包括防止电网崩溃、防止电网事故和多种保护措施。
广域保护系统的组成:(1)电力系统实时动态监测系统,实现了广大地区的电力系统监控和分析运行状态、电网广域测量系统。电力系统实时动态监测系统是安装在每个变电站的安装电力系统调度中心,同步相量测量单元和成分的变电站或发电厂的主要的通信系统。(2)基于广域信息负荷切割、裁切机和其他自动广域继电保护算法和广域控制策略。(3)为了实现自动广域控制策略,可以使用安装在每个变电站的安装调度控制中心网络和自动控制装置的电力系统实时控制系统。电网发生故障,现场的主要保护迅速降低,广域保护也开始在同一时间。广域保护系统同时监测运动情况的断路器。
广域保护系统主要包括电压异常的控制及其切削负荷、发电机阀控制、切割机、频率等,为了构建第二防线,实现广域安全自动控制功能,配合继电器保护和紧急控制操作,可以实现自动控制和安全紧急控制功能,防止损伤参数的极限和稳定。当系统处于异步振荡、建造第三防线,形成大量独立和稳定的子系统,严重干扰使其失去稳定性,能够走出互联系统优化的解决方案,以防止出现系统崩溃事故。
3.2主动原则的瞬态保护研究
瞬态保护是一种基于检测生成的高频瞬态传输线路保护。瞬态保护包括保护利用瞬时频率特征量(严格意义上指数量的瞬态保护)和暂态行波保护。数量的瞬态保护不受电源频率的影响,具有响应速度快的优点,精度高,如系统摇摆、过渡电阻和电流互感器饱和。新的数量的瞬态保护容易设置,它也具有简单的滤波器设计的优点。
(1)行波保护最早的瞬态保护。使用初始波行波头和后续的故障信息包含的两个或三个反射波并没有完全使用故障产生的暂态。行波保护可以分为纵向波极性比较式保护、行波差动保护、线路保护、波振幅比较方向判别方向的行波保护和距离保护。行波保护不受系统摇摆的影响,电流互感器(TA)饱和,具有良好的方向性,能快速响应。但是,很难区分由于闪电、网络操作和行波产生的谐波影响,如故障暂态行波,没有适应瞬态信号识别方法、不确定性的行波信号。(2)基于瞬时频率特性的保护。检测故障时产生故障信号的高频电压和电流。暂态保护的保护使用仍然存在当前通信信道容量、质量和成本高的问题;暂态保护没有交流,有雷电断路器,操作的瞬态信号很容易引起保护误动,难以实现故障选相问题,如电压零故障保护灵敏度是不够的。
4结语
智能变电站继电保护应满足智能调度、运行维护、监控、控制,实现信息的无人互动。不设置独立的保护信息子站,其功能实现的统一信息平台。站控层通信协议应符合IEC61850标准。未来智能变电站继电保护配置将向广域保护、暂态保护原理和自适应继电保护信息网格方向发展。继电保护技术的研究和探索,将进一步提高性能和安全可靠性的保护的目的。继电保护的功能,是一个统一的整体,需要一个设备,二次循环,协调渠道,保护设备,开发其整体性能。
参考文献
[1]胡聪,何劲,郭金龙.基于nRF24L01的无线电子教鞭
[J].科技信息,2012,(9).
关键词:继电保护;配电网;自动化;电力系统;用电需求文献标识码:A
中图分类号:TM77文章编号:1009-2374(2017)02-0062-02DOI:10.13535/ki.11-4406/n.2017.02.029
1继电保护与自动化配电网
1.1继电保护的基本要求
继电保护装置能够判断被保护的元件是否处在正常运行状态,进而分析它是否发生了故障。继电保护装置的这种功能可以将配电网的故障区分为保护区内和保护区外,进而方便自动化配电网的结构调整。从本质上讲,继电保护装置是根据电气发生故障前后的物理量变化来实现监测。根据自动化配电网的特性,继电保护装置应满足的要求主要如下:
1.1.1选择性。当电力系统发生故障时,继电保护装置仅将故障的区域从配电网中切出,其他非故障区域的电网不受影响。这种选择性是继电保护装置实现自动化配电网的核心所在,ψ远化的调整电网结构有着重要的作用。
1.1.2速度性。电力系统发生故障后,很可能对大型的设备造成损坏,因此继电保护装置必须要满足速度性的需求,以最快的速度切断故障区域电路。目前,继电保护装置的反应速度时间可以控制在0.08秒以内,基本满足了自动化配电网的需求。
1.1.3可靠性。基于自动化配电网的性能要求,继电保护装置必须有很强的可靠性,不发生误动作,以确保能够切实起到提升自动化配电网安全性的作用。
1.2自动化配电网的系统组成
目前,我国的自动化配电网主要分为两种:一种是集中智能式配电网;另一种是分散智能式配电网。两种形式的自动化配电网各有利弊,但其系统的组成大致相同,具体如下:
1.2.1一次设备。一次设备由自动离合器、环网柜和真空断路器组成,它有一定的智能化,可以执行各种调度命令,是整个自动化配电网的基础所在。同时,一次设备还可以与主控制器相连,实现远程的操作。
1.2.2故障定位系统。故障定位系统主要用来检测自动化配电网的故障点,然后利用地理信息系统将自身监测到的信息反馈给主系统。
1.2.3主站系统。主站系统由计算机网络、操作平台和操作软件组成,是整个自动化配电网的中枢所在,可以整合信息做出判断,然后给执行机构下达命令。同时主站系统还可以分享资源和管理维护,实现信息与数据的传输。
2继电保护自动化配电网应用中存在的问题
当电力系统中被保护的元件发生故障时,继电保护装置能够快速地做出反应,有选择地将故障元件从电力系统中排除。但是在被保护元件运行异常时,往往不需要继电保护装置快速反应,而是根据元件的危害程度规定一个延时,以免造成误动作。从当前的实际情况来看,我国自动化配电网的继电保护还存在一定问题,在一定程度上影响了我国自动化配电网的发展。
2.1继电保护设备的老化
我国的电网虽然一直在更新换代,但是这些更新主要是针对技术层面,所以电网系统中的继电器有很多都是老式继电器,其可靠性得不到保障。这种老式的继电器缺点主要体现如下:
2.1.1反应速度较慢。老式的继电器由于自身的老化,反应速度较慢。当元件发生故障之后,切断电路的速度无法满足需求。这就无法起到保护设备的作用,如果故障较为严重,将会造成设备的严重损坏,进一步扩大故障的影响范围。
2.1.2误动作较多。随着我国电力需求的不断增加,电网的电压不断升高。而电网电压的增加又会使被保护元件的异常运行状态更为频繁,老式的继电器无法精确地处理异常数据,往往会出现错误的状态判断,进而产生误动作,将事故的范围扩大。
2.2配电环网缺少继电保护
环网也是自动化配电网中必不可少的一部分,但是当前我国的环网却基本没有继电保护装置。从实际情况来看,当前的配电环网是以负荷开关为主的,需要人为的控制。因此当发生电力故障的时候,由于没有断路器,往往会造成整个电力网路的瘫痪。
配电环网缺少继电保护不仅会扩大电力故障,还延长了维修的时间。一般情况下,都是电力部门接到故障的通知,然后赶往现场进行维修的操作,这就增加了维修的时间。另外,由于故障的影响范围较大,很可能造成多个设备的损坏,也使得维修更为困难。
2.3继电保护装置自身的问题
在当前的自动化配电网络中,继电保护器自身也存在着问题。所以导致了继电保护起不到应有的保护效果,降低了自动化配电网的可靠性。继电保护装置自身的问题主要体现在以下两个方面:
2.3.1继电保护装置的灵敏性设置问题。继电保护装置是检测各个元件的运行状态,若其物理量变化超过了设定的范围,就会自动切断局部的电路,起到保护设备和电网安全的作用。但是物理量变化的设定是有一个范围的,避免由于不稳定的运行状态而导致误操作。以目前的实际情况来看,很多继电保护装置的灵敏性设置还存在问题,降低了继电保护装置所起的保护效果。
2.3.2质量检验不到位。当前的继电保护装置在安装前并没有经过系统的检查,所以很多装置的质量是不合格的。安装在自动化电网后,由于自身的质量问题,就存在安全隐患,无法正常监测电网元件的运行状态,当发生故障后,也不能及时地切断电路。
3自动化配电网继电保护应用的改进措施
3.1针对性更换继电保护设备
继电保护设备的更换可以分两个层次:第一个层次是老化设备的更换;第二个层次是旧式设备的更换。旧式设备的更换可以理解为技术的更新换代,因为随着科技的发展,继电保护器的功能一定会越来越强大,其监测的效果也会越来越好。特别是在当前的社会环境下,国家电网正在大力发展智能化和自动化,给继电保护设备的更换提供了较好的环境,所以可以根据当地的实际情况,淘汰掉原本的旧设备,让继电保护更好地发挥
作用。
老化设备的更换主要针对继电保护设备的使用情况,因为随着使用时间的增加和一些其他的原因,导致了继电保护设备的老化,影响它的正常使用,所以要针对性地进行老化设备的更换。
3.2重合器与其他设备的配合使用
重合器有着双时性的特点,可以实现重合与开断,所以它能够和其他设备配合,一起发挥出继电保护的作用。首先,当电路出现故障的时候,重合器就能够重合;然后分断器记录重合器的分闸次数,在达到预定设置次数的时候就闭锁,实现电网故障区的隔离。这在一定程度上实现了智能化的电网控制,也减弱了非正常\行状态对继电保护装置的影响。
重合器还可以与熔断器配合实现继电保护的作用,因为重合器能够实现重合,而熔断器可以监测流过元件的大电流,当电流过大的时候就自身熔断,起到故障区的隔离作用。当然,重合器和其他设备的配合使用要根据实际情况确定。如配电变压器的末端,可以选择重合器与熔断器的配合,实现继电保护的作用。
3.3继电保护装置的优化
为了更好地实现继电保护的效果,还可以采用继电保护装置优化的方法。当前的继电保护装置还是采用较为传统的方式,在一定程度上无法跟上智能化电网的发展速度。因此可以将信息化和数字化的技术引入到继电保护中,突破继电保护只能在局部中发挥作用的局限。例如,信息化的技术可以将多个继电保护装置连成一个整体,当一个继电保护装置执行电路断开的动作后,马上将信息上传,然后中央处理器快速地做出反应,调整自动化电网的结构,用最快的速度恢复供电。
数字化的技术还有利于继电保护装置的维修,利用信号的发射与接受装置,将不同的继电保护装置进行编码,在计算机网络中实时监控。当出现故障的时候就可以快速的定位,采取处理的措施,减少故障带来的电网损失。
4结语
自动化配电网已经成为国家电网发展的大方向,与之对应的继电保护必须加快改进的步伐,以此来保障电网运行的安全性和稳定性。目前,继电保护在自动化配电网络中的作用不可替代,虽然还存在一些问题,但是可以通过改进的措施使之完善。本文针对继电保护在自动化配电网中的应用问题,提出了一些意见,希望能够推动我国继电保护的发展,让它为自动化电网的发展提供强有力的支持。
参考文献
[1]胡汉梅,郑红,赵军磊,曾从海.基于配电网自动化的多Agent技术在含分布式电源的配电网继电保护中的研究[J].电力系统保护与控制,2011,(11).
[2]王富松.区域继电保护在含分布式电源配电网中的应用研究[D].重庆大学,2011.
关键词继电保护;测试技术;应用
中图分类号:tm774文献标识码:a文章编号:1671—7597(2013)051-054-01
在很长的一段时间里,我国的电力系统大都是采用移相器、调压器、滑杆电阻等来调整三相电压和三相电流的幅度和相位大小,以达到对各种继电保护装置进行调试的目的。在这个调试的过程中,同时还需要极其精密的电压表、电流表、相位表、频率计以及毫秒表等仪器设备完成对于试验所需物理参量的读取,整个过程的操作较为复杂,并且对于所测量物理量的精度要求较高。采用这种传统的测试方法,一方面设备的搬运工作极其艰巨、设备占用空间大,并且在测试过程中需要人工反复记录实验数据。这种传统的方法不但调试的技术落后、测试过程复杂、测试误差较大,而且还会在测试过程中消耗大量的人力物力。伴随着目前新型继电保护装置的应用,基于计算机的自动测试技术已经成为继电保护设备测试不可或缺的一部分。
1继电保护测试技术的发展
继电保护测试技术主要经历了组合型试验装置、集成电路型试验装置以及数字控制型试验装置。其中组合型的试验装置是将各个物理参数通过不同的装置分别进行测量,然后将测量结果进行组合,得出继电保护的测量结果,是一种传统的试验装置;集成电路型试验装置是在组合试验装置的基础上,采用集成电路芯片对测试装置进行控制,并且采用数码显示的方式,提高了测试数据读取的准确性和简便性;数字控制型试验装置主要是利用单片机的计算存储功能,并且具有一定的用户交互界面,是继电保护测试技术的重要发展。
基于计算机的继电保护测试装置由人机对话设定输入电流、电压参数值,并且通过程序控制信号源实现对电子线路、数模转换、功率放大等功能,并且向继电保护装置输出具有一定功率值的三相电流、电压源,同时能够接受来自继电保护装置的反馈信息,并且根据预先设置做出一系列的响应,对结果进行详细的记录,同时能够将测试的结果以文字或者图标的形式进行打印,真正的实现自动化测试的目标。
2继电保护自动测试系统的功能及应用
2.1继电保护自动测试系统的功能
目前的继电保护自动测试系统可以实现的功能主要有以下几个方面。
1)根据实际的继电保护测试需要进行测试,并且能够保证测试数据信息的准确性。这也是继电保护自动测试系统最基本的功能,是实现其他功能的基础。
2)实现在检点保护测试中的良好人机交互界面。在实际的继电保护测试过程中,操作人员可以根据测试系统交互界面的提示进行操作,并且可以按照系统给出的提示信息判断测试的过程是否合理以及测试的结果是否在误差范围内,可以有效的降低测试的难度和复杂度。
3)实现整个测试过程的自动化处理。在整个继电保护测试过程中,自动化测试系统可以在无人值守的情况下完成测试的全部流程,并且最终到处需要的测试数据。整个测试过程,只需要操作人员对门限定制进行设定和确认,减少了人员的工作强度,也从根本上提高了继电保护测试的精确度。同时降低了对操作人员的要求,降低了测试的成本。
4)自动化生成所需要的检测数据和检测报告。继电保护自动检测系统能够根据预先设定的需求,自动的在检测过程完成后到处测试的数据,并且可以生成完整的测试报告,真正的实现了整个测试过程的自动化,节约了操作人员用于编写测试报告以及整理的时间。
2.2继电保护自动测试系统的应用
继电保护自动测试系统的具体应用主要包括后台软件的启动、测试模板的导入、测试过程以及继电保护装置的启动。其实现过程如图1所示。
3继电保护测试技术应用的意义及其要求
3.1继电保护测试技术应用的意义
继电保护自动测试技术的应用能够大幅度改善了继电保护测试,是对目前的继电保护测试思路的重大突破和创新,它的应用能够有效的提高继电保护测试的精确的,提高继电保护测试的自动化水平,较少测试过程中人员的直接参与,可以从根本上减小继电保护测试的误差。同时,继电保护的自动化测试技术能够实现对于测试
结果的自动化处理,并且可以根据操作人员的要求生成完整的测试报告,这能够大幅度的提高继电保护测试的工作效率,降低整个测试过程中的成本消耗。从继电保护测试过程到测试报告的自动生产都实现了高度的自动化,也是目前继电保护测试技术发展的趋势。
3.2继电保护测试技术的要求
在继电保护测试过程中,为了更好的保证测试结果的准确性,进一步提高继电保护测试系统的工作效率,需要在测试过程中注意以下几个方面的问题。
1)在确定测上方案前需要对测试方案进行多次可行性分析。由于整个测试过程都是在自动化模式下完成的,因此,测试方案一旦确定就无法进行更改,错误的测试方案会导致严重的后果。需要在测试方案的确定前组织相关的人员进行多次方案的可行性论证,确保方案的可行性。
2)加强员工模板导入技术的培训。在整个继电保护自动化测试系统中,唯一需要操作人员的步骤就是方案模板的导入工作,这也是最为关键的一步。因此,要做到操作人员对于模板导入工作的培训,并且需要在正式上岗操作前进行严格的考核,切实保证测试数据的准确性。
4结束语
继电保护自动测试技术的应用是对继电保护测试的重要技术革新,能够有效的提高继电保护测试的精度。同时,继电保护自动测试技术能够降低对于操作人员的素质要求,能够降低企业的成本。因此,在继电保护测试中要加大自动化程度的开发力度,更进一步提高测试的精度。
参考文献
关键词:电力系统继电保护;稳定性
一、继电保护装置的定义
在电力系统中的电气元件或电力系统发生故障危及安全运行的事件中,需要值班人员及时发出警告信号,或者直接向所控制的断路器发出跳闸命令,对这些事件的终端的发展,从电力系统中断的故障元件的时间,最大限度地减少对电力系统元件本身的损坏,降低对电力系统安全和电力供应的影响,并满足电力系统的一些特殊要求。因此,电网的安全运行继电保护是已知的第一道防线。
二、继电保护装置的重要性
(一)继电保护装置是保证电力设备安全运行的基本元素
任何电气元件无继电保护状态可能无法运行。继电保护装置可以完成电力系统快速恢复,避免长期停电造成重大事故,预防和制止已开始发生的动力系统,如电力系统稳定的损耗,频率或电压崩溃瓦解。它的作用是:
(1)当电力系统保护组件故障,应该由元件的快速、准确地对断路器故障距离元件在跳闸指令继电保护装置在电力系统,从中断故障元件,以减少在本身的电气元件损坏,降低对电力系统安全和电力供应的影响,并满足电力系统的一些特殊要求。
(2)电气设备的不正常工作,并根据不同的信号产生设备不能正常运行和维护,需要值班人员处理,或由装置自动调整,将那些继续运行,使电气设备事故切除。
(二)故障原因分析
电气设备事故一般都要经历一些不可预知的事件和不正常的运行状态,如局部加热,电气设备的绕组匝间短路;由于实时监测设备的缺乏或操作人员对系统的操作条件下估计误差和不运行状态的认识深层原因,在设备故障或异常,可能引起一系列的连锁反应。从理论上讲,无论是在系统故障还是电气设备故障的地方,都是由继电保护故障位于段(自动装置)或后备保护延时故障造成的。在发生故障时保护装置可能会错误地跳,误操作,越级跳闸。在这种方式中,该系统是不稳定的,电力系统的稳定性和安全性也会减弱。网格可以分为几个独立的小系统,导致电网崩溃,造成大面积的停电,设备损坏。
(三)电气故障引起的严重后果
在供配电系统和电气设备的企业运中作,由于绝缘老化失效的各种原因,机械损伤和异常工作状态不能完全避免。短路故障是最危险的是常见的类型,它使系统电压下降,产生很大的短路电流,造成了严重的后果:(1)通过故障点大的短路电流和燃弧,使故障组件被破坏。例如,由于负荷超过额定值,造成电气设备的电流的增加(一般称为过载),是一种最常见的异常方式。由于过度负荷,载流部分和保温材料的元素继续上升,加速绝缘老化和损坏,可能会发展成一个故障。此外,电力短缺发生在系统由于较低的频率,电压发电机突然甩负荷的电力系统振荡,属于异常运行状态。(2)通过故障元件的短路电流,由于热、电造成的损坏或缩短使用寿命;(3)在电力系统中的电压大大降低,破坏用户工作或影响产品质量的稳定性。(4)并联运行稳定性的电力系统的损害,导致系统振荡,甚至使系统崩溃。
任何系统可能有故障的一个大区,这样一个大面积的故障会造成不良的后果,如1977纽约,2004美国发生大停电,澳大利亚和其他国家的大面积停电事故和俄罗斯2005大停电。从数据分析,是一个网格系统的局部故障,由于继电保护和自动装置的误动作,导致事故的扩大,电力系统崩溃,大面积停电,给生产造成较大影响,生活和社会稳定。然而,如果系统压力的情况,比如一些突发事件,过负荷或非常恶劣的天气条件下,如果错误的跳跃,会给生产系统中带来很大的压力,这导致大面积的系统故障。在电力系统自动重合闸装置,大大提高供电的可靠性。例如,在2007六月,一座110kV变电站的输电线路绝缘子的沿面闪络路径由于闪电,风引起的接触线,通过分支机构和其他物体落在导线造成短路,线路很快断开继电器保护,电弧应熄灭,绝缘故障点量表恢复力量,Mie散射Mie散射也被电弧烧伤消失。在这个时候,如果操作员手动将断路器关闭,电力供应也能恢复正常,但由于停电时间,电气设备,大部分已经停止,造成巨大损失的经济效益。由于变电站已安装自动重合闸装置,当断路器跳闸后,自动重合闸装置能迅速自动关闭断路器,使线恢复正常供电,减少经济损失。
电力系统继电保护装置的应用可以大大提高供电的可靠性,减少线路中断的数量,稳定性又能提高并联运行的电力系统。
三、电力系统的稳定性
继电保护的四个基本要求,电力系统的可靠性,继电保护的基本性质的选择性、快速性的要求,灵敏度。这些要求,一些相互补充,相互制约,需要针对不同的使用条件,分别协调。
(一)可靠性
继电保护装置的误动和拒动会对电力系统造成严重的危害。由于电力系统的结构和载荷特点,故障和拒绝行为是不同的损伤程度,从而提高了保护装置的可靠性主要集中在特定条件下也应不同。例如,当在系统中的旋转备用容量,传输线足够多,每个系统和电源和负载是密切相关的,由于继电保护装置误动作,使发电机变压器或切除的影响,通过传输线引起的电力系统可能很小;但如果发电机变压器输电线路故障的继电保护装置的动作,会对设备或系统的破坏,损失巨大。在这种情况下,提高继电保护可靠性不拒动作的可靠性比没有更重要的是提高故障。
(二)选择性
是指对房屋系统的最小可能的影响,控制断路器发展的操作系统,终止或失效事故。
(三)快速
是指继电器保护应该被允许可以高速断路器动作,断开故障或异常状态的发展。损坏的程度可以降低快速行动的继电保护故障元件,线路故障自动重合闸的成功率,同步运行后的稳定性和特殊的电力系统故障。短路故障快速切除线路和母线,是提高电力系统暂态稳定性的最重要手段。
(四)灵敏度
是指继电保护设计要求动作的故障和异常状态的能力能可靠动作。为了满足继电保护装置灵敏度的要求应该是内部故障保护范围规定的时间,不分地点,短路短路点的类型,以及短路点的过渡电阻是否正确的反应。
五、结论
很多例子表明,如果不正确安装的继电保护装置,往往会扩大事故,造成严重后果。因此,加强监督和保护技术,实施全过程管理,对人员素质的继电保护的持续改进,提高继电保护技术的运行管理水平和设备,应成为电力企业的重要工作。几十年来,随着中国电力系统的高电压,发展大机组,大电网继电保护技术和装置的应用水平有了很大提高。
参考文献
[1]毛锦庆.电力系统继电保护实用技术问答(第二版)[M].北京:中国电力出版社,2006.
众所周知,配电网系统规模较大、信息聚集点众多、结构组成复杂,因此与其相配的继电保护装置也随之分布在配电网系统中不同的位置,其应用范围上至变电站下到变电站内部与配电系统直接相关联的设备,以及在电网中开闭所、中压配电馈线、低压配电网以及配变站等。继电保护装置长久以来就是配电网中的重要组成部分,其发展经历与电力系统中的继保装置是完全相同的,由最初的电磁型继电保护装置,发展至晶体管型继电保护装置,在电力电子器件广泛应用后又出现了集成电路型继电保护装置。时至今日,伴随计算机技术的日新月异,所使用的继电保护装置多数属于微机型继电保护装置,但仍有各种类型的继电保护装置应用于不同的配电网系统中以适用不同层次电网的要求。伴随着微机系统继电保护装置性能更加优良、操作更加方便、维护更加简单,其在高压特高压电网中的推广逐渐成功,其应用日益广泛,更加深得人心。越来越多地适用于中低压配电网的继电保护装置也被不断开发应用。
2配电网保护存在的问题
电力系统继电保护的主要工作任务是切除系统中的故障设备以保障系统的正常运行。由于技术等各方面的原因,由常规继电保护装置构成的继电保护系统是一种非自适应继电保护系统,其动作特性不能随着电力系统的运行方式的变化而自行改变。常规继电保护的整定值是按照离线最严重的情况进行的,而且在运行中基本保持不变。因此,在常规继电保护整定计算过程中不得不按照每套保护对应的电力系统最大运行方式来计算保护的动作值,按照每套保护对应的电力系统最小运行方式来校验保护的灵敏度。这种按最严重的运行条件确认保护整定值的方法,虽可保证在电力系统各种运行方式下发生故障时,继电保护能正确动作,但同时存在着两个缺点:一是按照该方法确定的继电保护整定值,对电力系统其它运行方式来讲不是最佳的整定值;二是在电力系统最小运行方式下最不利的故障时,继电保护系统的性能会严重变坏甚至导致拒动现象。这两个缺点不但限制了电网运行的灵活性,而且也降低了电网运行的稳定性。正是在这样的背景下提出了自适应保护的概念。自适应保护是指根据电力系统运行方式和故障状态的变化能实时改变保护性能、特性或定值的保护。随着具有高速运算和逻辑判断能力、强大的记忆能力以及其固有的可编程性的微机保护在电力系统中的广泛应用和通信手段与通信技术的不断发展与进步,实现自适应继电保护已成为可能。
3遗传算法的配电网自适应保护
自适应继电保护是在上世纪80年代提出的一个较新的研究课题。它的最主要任务就是解决目前继电保护装置中所无法解决的问题,使得继电保护装置更趋于完善,现在所研制的适用于输电线路和配电系统元件的各类型微机继电保护装置,已经具备完全取代传统装置的能力,能够迅速将电力系统中发生故障的电气元件进行切除,使其免于遭受损坏,并使得其它无故障线路迅速恢复正常运行。遗传算法,是建立于达尔文的生物论以及孟德尔遗传学说基础之上的一种借鉴生物界自然选择和自然遗传机制的高度并行、随机、自适应搜索算法,具有坚实的生物学基础。遗传算法强调从生物群体观点出发,看待种群优化问题。依据遗传算法的思想,我们把所求问题中的每一个点都看做是一个个体,这些个体组成了群体,正因为如此,种群中的每一个个体都可以代表一个优化问题的可行解。本论文提出的基于遗传算法的配电网自适应继电保护,该保护是利用电网全局信息、保护定值在线整定的新型保护。
4基于Matlab算法的仿真和分析