关键字:继电保护;电力;维护
1前言
电力作为当今社会的主要能源,对国民经济的发展和人民生活水平的提高起着极其重要的作用。现代电力系统是一个由电能产生、输送、分配和用电环节组成的大系统。电力系统的飞速发展对电力系统的继电保护不断提出新的要求,近年来,电子技术及计算机通信技术的飞速发展为继电保护技术的发展注入了新的活力。如何正确应用继电保护技术来遏制电气故障,提高电力系统的运行效率及运行质量已成为迫切需要解决的技术问题。
2继电保护发展的现状
上世纪60年代到80年代是晶体管继电保护技术蓬勃发展和广泛应用的时期。70年代中期起,基于集成运算放大器的集成电路保护投入研究,到80年代末集成电路保护技术已形成完整系列,并逐渐取代晶体管保护技术,集成电路保护技术的研制、生产、应用的主导地位持续到90年代初。与此同时,我国从70年代末即已开始了计算机继电保护的研究,高等院校和科研院所起着先导的作用,相继研制了不同原理、不同型式的微机保护装置。1984年原东北电力学院研制的输电线路微机保护装置首先通过鉴定,并在系统中获得应用,揭开了我国继电保护发展史上新的一页,为微机保护的推广开辟了道路。在主设备保护方面,关于发电机失磁保护、发电机保护和发电机-变压器组保护、微机线路保护装置、微机相电压补偿方式高频保护、正序故障分量方向高频保护等也相继通过鉴定,至此,不同原理、不同机型的微机线路保护装置为电力系统提供了新一代性能优良、功能齐全、工作可靠的继电保护装置。随着微机保护装置的研究,在微机保护软件、算法等方面也取得了很多理论成果,此时,我国继电保护技术进入了微机保护的时代。
目前,继电保护向计算机化、网络化方向发展,保护、控制、测量、数据通信一体化和人工智能化对继电保护提出了艰巨的任务,也开辟了研究开发的新天地。随着改革开放的不断深入、国民经济的快速发展,电力系统继电保护技术将为我国经济的大发展做出贡献。
3电力系统中继电保护的配置与应用
3.1继电保护装置的任务
继电保护主要利用电力系统中原件发生短路或异常情况时电气量(电流、电压、功率等)的变化来构成继电保护动作。继电保护装置的任务在于:在供电系统运行正常时,安全地。完整地监视各种设备的运行状况,为值班人员提供可靠的运行依据;供电系统发生故障时,自动地、迅速地、并有选择地切除故障部分,保证非故障部分继续运行;当供电系统中出现异常运行工作状况时,它应能及时、准确地发出信号或警报,通知值班人员尽快做出处理。
3.2继电保护装置的基本要求
选择性。当供电系统中发生故障时,继电保护装置应能选择性地将故障部分切除。首先断开距离故障点最近的断路器,以保证系统中其它非故障部分能继续正常运行。
灵敏性。保护装置灵敏与否一般用灵敏系数来衡量。在继电保护装置的保护范围内,不管短路点的位置如何、不论短路的性质怎样,保护装置均不应产生拒绝动作;但在保护区外发生故障时,又不应该产生错误动作。
速动性。是指保护装置应尽可能快地切除短路故障。缩短切除故障的时间以减轻短路电流对电气设备的损坏程度,加快系统电压的恢复,从而为电气设备的自启动创造了有利条件,同时还提高了发电机并列运行的稳定性。
可靠性。保护装置如不能满足可靠性的要求,反而会成为扩大事故或直接造成故障的根源。为确保保护装置动作的可靠性,必须确保保护装置的设计原理、整定计算、安装调试正确无误;同时要求组成保护装置的各元件的质量可靠、运行维护得当、系统简化有效,以提高保护的可靠性。
3.3保护装置的应用
继电保护装置广泛应用于工厂企业高压供电系统、变电站等,用于高压供电系统线路保护、主变保护、电容器保护等。高压供电系统分母线继电保护装置的应用,对于不并列运行的分段母线装设电流速断保护,但仅在断路器合闸的瞬间投入,合闸后自动解除。另外,还应装设过电流保护,对于负荷等级较低的配电所则可不装设保护。变电站继电保护装置的应用包括:①线路保护:一般采用二段式或三段式电流保护,其中一段为电流速断保护,二段为限时电流速断保护,三段为过电流保护。②母联保护:需同时装设限时电流速断保护和过电流保护。③主变保护:主变保护包括主保护和后备保护,主保护一般为重瓦斯保护、差动保护,后备保护为复合电压过流保护、过负荷保护。④电容器保护:对电容器的保护包括过流保护、零序电压保护、过压保护及失压保护。随着继电保护技术的飞速发展,微机保护的装置逐渐投入使用,由于生产厂家的不同、开发时间的先后,微机保护呈现丰富多彩、各显神通的局面,但基本原理及要达到的目的基本一致。
4继电保护装置的维护
值班人员定时对继电保护装置巡视和检查,并做好各仪表的运行记录。在继电保护运行过程中,发现异常现象时,应加强监视并向主管部门报告。
建立岗位责任制,做到每个盘柜有值班人员负责。做到人人有岗、每岗有人。值班人员对保护装置的操作,一般只允许接通或断开压板,切换开关及卸装熔丝等工作,工作过程中应严格遵守电业安全工作规定。
做好继电保护装置的清扫工作。清扫工作必须由两人进行,防止误碰运行设备,注意与带电设备保持安全距离,避免人身触电和造成二次回路短路、接地事故。对微机保护的电流、电压采样值每周记录一次,每月对微机保护的打印机进行定期检查并打印。
定期对继电保护装置检修及设备查评:①检查二次设备各元件标志、名称是否齐全;②检查转换开关、各种按钮、动作是否灵活无卡涉,动作灵活。接点接触有无足够压力和烧伤;③检查控制室光字牌、红绿指示灯泡是否完好;④检查各盘柜上表计、继电器及接线端子螺钉有无松动;⑤检查电压互感器、电流互感器二次引线端子是否完好;⑥配线是否整齐,固定卡子有无脱落;⑦检查断路器的操作机构动作是否正常。
关键词:电力系统;继电保护;新技术
中图分类号:TM76文献标识码:A
电力系统无时无刻都处在使用中,在电力系统在使用的过程中,很有可能随时发生各种突发的状况,我们在生活中最常见的电力系统突发状况就是突然间的停电,也就是电力系统的短路问题。这就要求继电保护装置在这种突发状况发生的时候对起到一种保护的作用。继电保护装置是一种能自动反应电力系统发生突发状况并发出信号的装置。它的主要作用就是在电力系统发生突发状况的时候可以很快的将出现问题的元件在电力系统中切除,对未出现故障的元件起到保护的作用,并使其他元件可以正常进行运作。在出现电力元件不正常运行的时候,可以发出信号对这一现象进行预警。
在电力系统运作的时候,我们采取了很多的措施以防止其在运作的过程中出现突发的状况,但是这些措施的实施并不能保证万无一失,故障还是有可能突然的发生,在故障发生的时候,应该快速的把故障的元件分离开,故障元件的分离可以有效的保证电力系统的正常运行。
1电力系统短路的危害
在电力系统发生故障的时候可能会发生很多意想不到的后果,首先是如果发生故障的面积很大的话,可能会导致短路的电流把电弧点燃起来,使其他的元件也发生短路。其次是当电力系统发生短路的时候,短路的电流通过完好的元件的时候可能出现发热的状况,使得完好的元件的性能发生变化,使它的使用寿命减短。再次是电力系统的突然短路会导致部分地区的电压迅速下降,对于使用的用户来说可能会带来不必要的损失,如果该区域有工厂的存在的话,可能会使工厂的车间无法正常工作,对车间生产的产品质量会造成损害,进而影响工厂的效益。
还有一种情况是,电力系统的电气元件的工作环境遭到了破坏,但是电气元件没有发生故障,这种情况是不正常的运行状态。在电气元件处于过度负荷的状况下,会使元件承载的电流加大,绝缘材料的温度会不断的增加,这样就会导致线路绝缘性的不断降低。此外,电力系统因为运行功率的缺额会导致功率的降低,电力系统因此发生震动,这样的不正常运行状态和电路都会给在使用电力的人员和设备带来意想不到的损失。
2继电保护现状
现阶段各种主电气设备、低高压线路都有相对应的微机保护装置对其进行保护,特别是线路保护已形成系列产品,并得到广泛应用。在实际的工作生活中微机保护是比较高的,远远高于其他的各种保护措施。目前对于220KV的继电保护装置已经基本是国产的,我国继电保护技术发展非常迅速,国产的继电器优势方面非常明显。
3继电保护新技术探索
3.1自适应控制技术在继电保护中的应用
从上个世纪80年代开始,就出现了自适应机电保护的相关概念了。它是一种根据电力系统运行方式和故障状态的变化而实时改变保护性能、特性或定值的新型继电保护措施。自适应继电保护的出现对电力系统来说是一项革命性的新措施。它可以有效的保护电力在供应的过程中出现的突发状况,对用户的用电安全是一项安全措施。这种保护原理一经出现,就引发了人们对它的关注,科学家也在此方面不断的进行研究,为了使它可以更好的为人们的生活服务。
3.2人工神经网络在继电保护中的应用
从20世纪90年代开始,人工智能技术在电力系统中得到了应用,因此电力系统保护领域的研究工作也转向了人工智能方面的研究。专家系统、人工神经网络和模糊控制理论逐步应用于电力系统继电保护中,为继电保护的发展注入了活力。基于生物神经系统的人工神经网络具有分布式存储信息、并行处理、自组织、自学习等特点,其应用研究发展十分迅速,目前主要集中在人工智能、信息处理、自动控制和非线性优化等方面上。
3.3变电所自动化技术
在变电站的监视、控制、保护和计量装置这这些方面的工作上逐渐运用上了现代的计算机技术、通信技术和网络技术,这些技术的运用,改变了变电站以前的工作状况,简化了工作量,使得更大规模的变电站也在此方面快速的发展着新的技术。继电保护和自动化的结合工作成为了一项对电力系统目前最重要的一项工作。他们的相互结合工作,使得远程控制、资源共享,信息共享成为了可能。以远方终端单元、微机保护装置为核心,将变电所的控制、信号、测量、计费等回路纳入微机系统,取代了传统的控制保护屏,它能够变电所的占地面积和设备投资都发生改变,减少资金的支出,提高二次系统的可靠性。伴随着计算机性价比的增大,于此同时现代的通讯技术每天也在发生日新月异的进步,以及各种标准化规约的陆续推出,变电站综合自动化的发展将更加迅速。
3.4智能电网的特点
智能电网的特点是电力和信息的双向流动,便于建立一个高度自动化和广泛分布的能量交换网络。为了实时的交换信息和设备层次上近乎瞬间的供需平衡,在这个关键目标下,继电系统的保护发展取得了一个广阔的空间,也催生了一批新的商业模式,其技术涉猎广泛,如再生能源、计算机网络技术等,许多工作集中于分布式电源的并网及灵活运行的控制策略上。未来电力系统的继电保护技术的发展将在传统电力系统趋向智能系统的转变中迎来创新。
现在,变电站已经使用了计算机数字化对变电站进行监视、控制和保护,但是这些功能的实现都是单一的实现的,并没有把所有的功能都结合起来,各个装置之间缺乏整体协调和功能的调优,且功能交叉、输入信息不能共享、接线复杂,这样就从整体上减低了自动化的可靠性,对于这些功能的开发和投入使用耗费了大量的资金,但是最后却没有达到预想的效果,这样的实际效果是对前期准备工作的一种否定。变电站使用的自动化系统是一种常规的自动化系统,它应用自动控制技术、微机数据采集和处理技术、通信技术,代替人工对变电站进行正常运行的监视、操作、电压无功控制、量测记录和统计分析、故障运行的监视、报警和事件顺序记录与运行操作,大多不涉及继电保护、紧急控制、故障录波、维修状态信息处理等功能,功能相对比较简单。
我们可以根据现在的变电站的自动化集成的程度,对将来变电站的自动化发展前景进行相应的预测,可以把自动化系统分为协调型自动化和集成型自动化。协调型自动化仍然保留在间隔内各自独立的控制、保护等装置,各自采集数据并执行相应的输出功能,通过统一的通信网络与站级相连,在站级上建立一个统一的微机系统,进行各个功能的协调;集成型自动化既在间隔级,又在站级对各个功能进行优化组合,是现代控制技术、微机技术和通信技术在变电站自动化系统的综合应用。
结语
竞争是社会主义市场经济的核心,同时也是科学技术创新的源泉,竞争同时也是电力市场进行革新的动力,所以在继电保护和自动化方面的研究工作也得到了很大的发展,在经济效益的驱动下,电力系统将向更加智能化、集成自动化方向发展。微机保护必将随着各种技术的进步和发展呈现更新的特征,也将获得更广泛的应用。
参考文献
[1]张素玲.工业企业供电与变电[M].北京:石油工业出版社,2009.
关键词:继电保护运行现状发展前景
1、我国电力系统
继电保护技术的发展现状继电保护技术是随着电力系统的发展而发展的,它与电力系统对运行可靠性要求的不断提高密切相关。熔断器就是最初出现的简单过电流保护,时至今日仍广泛应用于低压线路和用电设备。由于电力系统的发展,用电设备的功率、发电机的容量不断增大,发电厂、变电站和供电网的结线不断复杂化,电力系统中正常工作电流和短路电流都不断增大,熔断器已不能满足选择性和快速性的要求,于是出现了作用于专门的断流装置的过电流继电器。本世纪初随着电力系统的发展,继电器才开始广泛应用于电力系统的保护。这个时期可认为是继电保护技术发展的开端。
自本世纪初第一代机电型感应式过流继电器(1901年)在电力系统应用以来,继电保护已经经历了一个世纪的发展。在最初的二十多年里,各种新的继电保护原理相继出现,如差动保护(1908年)、电流方向保护(1910年)、距离保护(1923年)、高频保护(1927年),这些保护原理都是通过测量故障发生后的稳态工频量来检测故障的。尽管以后的研究工作不断发展和完善了电力系统的保护,但是这些保护的基本原理并没有变,至今仍然在电力系统继电保护领域中起主导作用。
继电保护装置是保证电力系统安全运行的重要设备。满足电力系统安全运行的要求是继电保护发展的基本动力。快速性、灵敏性、选择性和可靠性是对继电保护的四项基本要求。为达到这个目标,继电保护专业技术人员借助各种先进科学技术手段作出不懈的努力。经过近百年的发展,在继电保护原理完善的同时,构成继电保护装置的元件、材料等也发生了巨大的变革。继电保护装置经历了机电式、整流式、晶体管式、集成电路式、微处理机式等不同的发展阶段。
50年代,我国工程技术人员创造性地吸收、消化、掌握了国外先进的继电保护设备性能和运行技术,建成了一支具有深厚继电保护理论造诣和丰富运行经验的继电保护技术队伍,对全国继电保护技术队伍的建立和成长起了指导作用。阿城继电器厂引进消化了当时国外先进的继电器制造技术,建立了我国自己的继电器制造业。因而60年代是我国机电式继电保护繁荣的时代,为我国继电保护技术的发展奠定了坚实基础。
自50年代末,晶体管继电保护已在开始研究。60年代中到80年代中是晶体管继电保护蓬勃发展和广泛采用的时代。在此期间,从70年代中,基于集成运算放大器的集成电路保护已开始研究。到80年代末集成电路保护已形成完整系列,逐渐取代晶体管保护。到90年代初集成电路保护的研制、生产、应用仍处于主导地位,这是集成电路保护时代。
国内微机保护的研究开始于70年代末期,起步较晚,但发展很快。1984年我国第一套微机距离保护样机在试运行后通过鉴定并批量生产,以后每年都有新产品问世;1990年第二代微机线路保护装置正式投入运行。目前,高压线路、低压网络、各种主电气设备都有相应的微机保护装置在系统中运行,特别是线路保护已形成系列产品,并得到广泛应用。我国在2000年220kV及以上系统的微机保护率为43.99%,线路微机保护占86%,到2003年底,220kV以上系统的微机保护已占到70.29%,线路的微机化率达到97.6%。实际运行中,微机保护的正确动作率要明显高于其他保护,一般比平均正常动作率高0.2~0.3个百分点。国产微机保护经过多年的实际运行,依靠先进的原理和技术及良好的工艺已全面超越进口保护。从80年代220KV及以上电压等级的电力系统全部采用进口保护,到现在220KV系统继电保护基本国产化,反映了继电保护技术在我国的长足发展和国产继电保护设备的明显优势。
微机继电保护技术的成熟与发展是近三十年来继电保护领域最显着的进展。经过长期的研究和实践,现在人们已普遍认可了微机保护在电网中无可替代的优势。微机保护具有自检功能,有强大的逻辑处理能力、数值计算能力和记忆能力,并且具备很强的数字通信能力,这一切都是电磁继电器、晶体管继电器所难以匹敌的。计算机技术的进步,更高性能、更高精度的数字器件的采用,一直是微机继电保护不断发展的强大动力。
2、微机继电保护的主要特点
微机保护充分利用了计算机技术上的两个显着优势:高速的运算能力和完备的存贮记忆能力,以及采用大规模集成电路和成熟的数据采集,A/D模数变换、数字滤波和抗干扰措施等技术,使其在速动性、可靠性方面均优于以往传统的常规保护,而显示了强大生命力,与传统的继电保护相比,微机保护有许多优点,其主要特点如下:
1)改善和提高继电保护的动作特征和性能,正确动作率高。主要表现在能得到常规保护不易获得的特性;其很强的记忆力能更好地实现故障分量保护;可引进自动控制、新的数学理论和技术,如自适应、状态预测、模糊控制及人工神经网络等,其运行正确率很高,已在运行实践中得到证明。
2)可以方便地扩充其他辅助功能。如故障录波、波形分析等,可以方便地附加低频减载、自动重合闸、故障录波、故障测距等功能。
3)工艺结构条件优越。体现在硬件比较通用,制造容易统一标准;装置体积小,减少了盘位数量;功耗低。
4)可靠性容易提高。体现在数字元件的特性不易受温度变化、电源波动、使用年限的影响,不易受元件更换的影响;且自检和巡检能力强,可用软件方法检测主要元件、部件的工况以及功能软件本身。
5)使用灵活方便,人机界面越来越友好。其维护调试也更方便,从而缩短维修时间;同时依据运行经验,在现场可通过软件方法改变特性、结构。
6)可以进行远方监控。微机保护装置具有串行通信功能,与变电所微机监控系统的通信联络使微机保护具有远方监控特性。
3、未来继电保护技术的发展前景
微机保护经过近20年的应用、研究和发展,已经在电力系统中取得了巨大的成功,并积累了丰富的运行经验,产生了显着的经济效益,大大提高了电力系统运行管理水平。近年来,随着计算机技术的飞速发展以及计算机在电力系统继电保护领域中的普遍应用,新的控制原理和方法被不断应用于计算机继电保护中,以期取得更好的效果,从而使微机继电保护的研究向更高的层次发展,其未来趋势向计算机化,网络化,智能化,保护、控制、测量和数据通信一体化发展。
3.1微计算机硬件的更新和网络化发展在计算机领域,发展速度最快的当属计算机硬件,按照着名的摩尔定律,芯片上的集成度每隔18~24个月翻一番。其结果是不仅计算机硬件的性能成倍增加,价格也在迅速降低。微处理机的发展主要体现在单片化及相关功能的极大增强,片内硬件资源得到很大扩充,单片机与DSP芯片二者技术上的融合,运算能力的显着提高以及嵌入式网络通信芯片的出现及应用等方面。这些发展使硬件设计更加方便,高性价比使冗余设计成为可能,为实现灵活化、高可靠性和模块化的通用软硬件平台创造了条件。硬件技术的不断更新,使微机保护对技术升级的开放性有了迫切要求。网络特别是现场总线的发展及其在实时控制系统中的成功应用充分说明,网络是模块化分布式系统中相互联系和通信的理想方式。如基于网络技术的集中式微机保护,大量的传统导线将被光纤取代,传统的繁琐调试维护工作将转变为检查网络通信是否正常,这是继电保护发展的必然趋势。微机保护设计网络化,将为继电保护的设计和发展带来一种全新的理念和创新,它会大大简化硬件设计、增强硬件的可靠性,使装置真正具有了局部或整体升级的可能。
继电保护的作用不只限于切除故障元件和限制事故影响范围(这是首要任务),还要保证全系统的安全稳定运行。这就要求每个保护单元都能共享全系统的运行和故障信息的数据,各个保护单元与重合闸装置在分析这些信息和数据的基础上协调动作,实现微机保护装置的网络化。这样,继电保护装置能够得到的系统故障信息愈多,对故障性质、故障位置的判断和故障距离的检测愈准确,大大提高保护性能和可靠性。
3.2智能化进入20世纪90年代以来,人工智能技术如神经网络、遗传算法、进化规划、模糊逻辑等在电力系统各个领域都得到了应用,电力系统保护领域内的一些研究工作也转向人工智能的研究。专家系统、人工神经网络(ANN)和模糊控制理论逐步应用于电力系统继电保护中,为继电保护的发展注入了活力。
人工神经网络(ANN)具有分布式存储信息、并行处理、自组织、自学习等特点,其应用研究发展十分迅速,目前主要集中在人工智能、信息处理、自动控制和非线性优化等问题。近年来,电力系统继电保护领域内出现了用人工神经网络(ANN)来实现故障类型的判别、故障距离的测定、方向保护、主设备保护等。例如在输电线两侧系统电势角度摆开情况下发生经过渡电阻的短路就是一非线性问题,距离保护很难正确作出故障位置的判别,从而造成误动或拒动;如果用神经网络方法,经过大量故障样本的训练,只要样本集中充分考虑了各种情况,则在发生任何故障时都可正确判别。其它如遗传算法、进化规划等也都有其独特的求解复杂问题的能力。将这些人工智能方法适当结合可使求解速度更快。可以预见,人工智能技术在继电保护领域必会得到应用,以解决用常规方法难以解决的问题。
关键字:继电保护;电力系统;保护技术;研究
中图分类号:TM774文献标识码:A
引言:
在50年代我国工程技术人员成功地吸收并且消化了国外先进的继电保护设备技术,组建了一支具有丰富的技术队伍,但随着电力系统的不断发展,继电保护技术在我国的电力建设当中出现了一系列的问题,阻碍了电力的发展,因此,本文简要地对电力系统继电保护的发展状况,以及其组成和工作原理,在未来的发展状况做出了分析。
1、电力系统继电保护的发展现状
电力是当前社会不断发展的原动力,对提升人民生活质量和国家发展经济的不断发展当中,电力发挥了至关重要的作用。现代化的电力系统的组成部分包括有运输电能、产生电能、分配电能和使用电能等这几个阶段。继电保护是会随着电力系统的发展而发展,两者之间对运行的可靠性有着非常紧密的联系。1949新中国成立后,在继电保护方面出现了有关的设计、科学技术、以及相关专业,在50年代我国工程技术的相关人员就成功的吸收并吃透了国外先进的继电保护设备技术,组建了一支具有丰富继电保护运行经验的技术队伍,为我国继电保护技术的相关发展奠定了基础。
我国在60年代中期己经在继电保护设计以及运行等方面构建了一整套相关环节的体系,这是探索机电式继电保护的重要时代,为我国之后再继电设备的发展提供了便利,我国从70年代末开始研究微机保护,虽然引进的很晚,却表现出了较快的发展趋势。
从1984年大批量的生产出第一套微机距离保护样机,在其通过并运行后,每年几乎都会有新的产品出现;第二代微机线路保护设备在1990年开始正式使用运行。在电气设备中、低压网络对微机保护设备运行与应用,已经被广泛的应用于保护设备的运行当中,还形成了线路保护的相关产品。在2000年超过220kv的微机系统保护效率大概44%左右,微机保护线路所占比例是87%。在实际操作运行过程中,微机保护要比其他保护的正确动作率高。我国经过多年以来的微机保护操作运行之后,凭借其先进的技术原理以及优良的操作工艺己经在整体上超过了进口的继电保护设备。
2、继电保护组成及工作原理
2.1继电器的组成和原理
虽然继电保护有着很多的种类,但大部分的都是由逻辑模块、执行模块、测量模块组成的。测量模块是对保护对象相关运行的特征信号进行采集,测量信号的获得需要同给定的整定值对比,输入信号是来自电力传输系统保护对象的信号,把相比较的结果送到逻辑模块。逻辑模块的比较值的大小是要依据测量模块输出、通过多种参数的相互组合,对逻辑进行运算,决定的主要依据所计算出的逻辑值。当逻辑值为1时,激励动作的信号会传达到执行模块中,这时,执行模块会在规定的时刻延时或马上掉电或者执行警报的命令。
2.2继电器的分类
(1)继电器按结构型式分类,目前主要有感应型、整流型、电磁型和静态型。
(2)继电器按在继电保护中的作用,可以分为辅助继电器以及测量继电器这两大类。改进和完善保护是要靠辅助继电器去实现,根据其不同的作用,可以划分为信号继电器、事件继电器和中间继电器等。电气量是否变化会由测量继电器直接反映出来,按所反应电气量的不同,还可以分为功率方向继电器、电流继电器、正序负序零序继电器、电压继电器、阻抗继电器、差动继电器和频率继电器等几类。
3、继电保护常见的故障影响
3.1电流互感饱和对配电系统的影响
配电保护以及对变电设备受电流互感器饱和的影响是非常大的,当系统靠近终端设备区发生短路时,电流肯定会增大,接近或是达到电流互感器单次额定电流的几百倍。因为配电系统设备终端不断的增加负荷,若是系统发生短路现象,短路的电流很大,导致事故发生。在常态短路的情况下,电流互感器的误差会随当电流的不断增加而加剧,继电保护的灵敏度也会随之降低就会出现阻止电流的方式,因为电流互感器的电流呈饱和状态,二次电流在进行再次感应时电流会减小到零的状态,最终无法运作定时限过流保护装置。
3.2开关保护设备选择不当造成的影响
在开关保护设备的选择上也是非常重要的,现在,大多数配电开关站都建立在高负荷的密集地区,采用一种循环的输电供电方式。在开关站上没有实现继电保护的自动化,而是大量采用或其继电器设备系统和负荷开关作为开关保护设备。
3.3隐形故障的排除影响
目前,电力系统保护系统会造成很多的停电事故,很多隐故障都存在于继电保护中,这已经成为提高继电保护有待解决的最为关注的问题,许多文章都会对继电保护的隐形故障的进行分析。在跳闸元件遇到问题时情况下重要的输电线路以及所有的远地和本地的跳闸指令都是有效的。这些合理的设计都需要一个规范的体系,保障继电保护的有效实现。
4、电力系统继电保护配置与匣用
4.1继电保护设备的作用
电力系统的应用在出现异常情况或短路时电气量产生变化时对其实施保护操作是继电保护的重点,它的主要工作是在电力系统、安全正常运行时,有效地监视各个设备的操作以及运行的情况,在运行过程中为值班的工作人员提供重要的依据。当运行电力系统时产生异常的话,继电保护准确及时的做出提示,通知相关人员去解决问题;当电力系统出现问题时,为了保证期部分可以有效并安全的运行,继电保护会切除发生问题的运行部分。
4.2继电保护的应用
在企业工厂高压供电系统、变电站中普遍应用继电保护设备,要安装过电流保护,降低负荷的等级,保护在高压线路的供电系统。把分母线运用到高压供电系统中,加强继电保护设备的性能,因为分母线不可以并列进行操作的运行情况,应当安装保护电流的速断装置,断路器若是在转眼间发生合闸之后可以自行解除。
4.3继电保护设备的工作要求
在运行时电力系统若是出现问题,继电保护设备自动的将发生问题某些部分予以切除。首先要把出现问题的最近的断路器断开,使其安全的部分可以继续在电力系统中运转。保护设备的灵敏度往往是由灵敏系数决定的。当继电保护设备出现问题时应当尽快对其切除。在继电保护工作的范围内,不管处于怎样的短路点位置和短路出现怎样的特性,保护设备也不可以拒绝操作;若是问题发生在保护范围之外,也不能出现错误的操作动作。减少问题切除的时间以便降低短路电流损坏电气设备的程度,当即对电力系统电压进行恢复,为电气设备实现自启动进一步提供有利的条件,与此同时,会很好的保障发电设备以及操作运行的稳定性。
5、电力系统继电保护技术未来的发展状况
5.1网络化
计算机网络在处理信息与通信数据过程中发挥着建设国家能源经济的重要作用,网络化产生的便利性在电力传出与配电系统中快速的被应用。
5.2信息化发展
伴随着迅速发展的现代计算机通讯技术,在CPU核产生的硬件保护也是迅速的发展着。自动芯片硬件控制电路保护的发展过程,微机保护的结构已经从16位单结构快速的转变为为CPU32位多结构,最后又发展成总线结构,功能和响应速度被有效提高,并逐渐的运用到继电保护中。
5.3智能技术
近几年来,智能技术已经被逐渐的运用到电力系统自动化研究领域中,在继电保护实现网络计算机化的情况下,使得测量、控制和保护工作的成为一个整体,并快速度运用到智能化的继电保护当中,这也是目前电力系统继电保护技术的发展方向。
6、结束语
因为我国不断进步的计算机通信技术和电力系统的快速发展,继电保护技术将会面向着计算机化、智能化方向、网络化积极的发展,使得继电保护工作产生更为严格的要求。对继电保护设备要进行定期的实施维修和检查,按期巡检各种运行情况,及时准确有效的处理好各种问题,为电力系统设备正常的操作提高更好的方式,进一步提高供电的稳定性。
参考文献:
[1]何云鹏.浅谈继电保护装置的状态检修[J].科技创新与应用.2012(29)
【关键词】火力发电厂1000MW机组继电保护
随着我国工业社会的不断发展,我国火力发电工业也得到了大幅度的发展,越来越多的大容量和高电压的发单机组被广泛的运用到电力系统建设中。其中1000MW是这些高电压和大容量发电机组中容量最大的一种,这种发电机可以降低电力工业发电的成本,其安全运行关系着整个电厂的稳定发。1000MW发电机组的内部结构一般都比较复杂,一旦结构中任何一部分出现问题,都会对火电厂造成较大的经济损失。因此,这对火力发电厂继电保护技术提出了更高的要求。
1继电保护技术简介
继电保护是火力发电厂供电系统中保证电力企业安全供电的重要工具,主要指的是对电力系统的故障和安全运行异常状况进行深入的研究,并根据研究结果制订出保证系统安全运行的保护方法。继电保护是电力系统中的重要环节,继电保护技术主要包含可靠性、选择性、灵敏性和速动性四个基本要求,只有完全做到这四个基本要求,才能够真正发挥继电保护的作用,从而实现保护系统安全运行的目的。
继电保护的设置要求包括以下几项:首先,继电保护设置前必须要准确了解电力系统的内部结构和运行特点,然后制订出合理的方案;其次,继电保护包括主保护和后备保护,后备保护是当主保护出现拒绝动作时,由相邻设备或线路的保护实现后备,是一种辅助设备;第三,辅助保护可以采用电流速断的方式,加速切除线路故障或消除方向元件的死区,从而构成辅助保护。
2火力发电厂1000MW机组应用继电保护技术的必要性
继电保护技术是电力系统中的一个重要环节,做好继电保护技术既可以保障电力系统的安全运行,又可以促进电力系统体制的改革。随着电力工业的发展和电网规模的不断扩大,再加上电力系统本身存在着各种不安全因素,人们对于电网不间断供电提出了更高的要求,必须要减少和避免电网事故的发生,因此,在火力发电厂1000MW机组中应用继电保护技术是十分必要的,不仅可以在很大程度上减少电网事故的发生,而且能够保障更多人民的生命和财产安全。
3继电保护技术在火力发电厂1000MW发电机组中的应用
3.1设置继电保护装置的总体要求
变压器是火力发电厂供电设备中的重要组成部分,这一设备一旦发生故障将直接影响整个供电的可靠性和电力设备的正常运行。目前,大部分的火力发电厂所使用的变压器虽然质量和结构都比较可靠,故障的发生也得到了有效控制,但是在实际运行过程中,还是会受一些主观因素的影响,从而出现各种类型的故障和异常现象。另外,一些容量较大的变压器体积一般都比较大,当出现故障时根本无法移除处理,因此,为了保障火力发电厂发电机组的运行安全,必须要根据变浩魅萘亢偷缪沟拇笮∩柚冒踩可靠的继电保护装置,从而实现经济的最大化。
3.2需要设置针对性继电保护装置的故障类型
第一类是绕组及其引出线的相间短路和中性点直接接地侧的接地短路。第二类是过负荷现象的存在。第三类是绕组的匝间短路现象。第四类是存在油面降低的现象。针对这些故障类型都应该设置针对性的继电保护装置,另外针对变压器温度升高和冷却系统的故障,可以装设信号装置。
3.3继电保护装置类型
第一类是众联差动保护装置。此种保护装置为火电厂变压器安全运行的主保护。其能预防和有效处理变压器发生的短路情况,包括匝间电路短路、中心点绕组接地短路以及绕组相间电路短路等故障类型。一般情况下,如果电力变压器的电压小于3200kV安,变压器电流时限大于0.5s,则应该使用众联差动保护装置。此外,为避免因保护装置的作用而发生错误的报告,众联差动保护装置设置完毕且全部动作之后,连接变压器电源的断路器必须要全部断开。第二类是过负荷保护装置。过负荷保护装置可以应用于由多个备用电源组合而成的、变压器的电压超过400kVA。其保护装置的连接位置是一相电流。第三类是瓦斯保护装置。其保护装置可以应用于油侵变压器,电压超过800kV安的变压器。可依据瓦斯的变化来决定保护装置的动作对象。如果瓦斯变化很轻微,则动作于信号;如果瓦斯变化很大,则动作于断路器。如果没有断路器,则动作于变压器的单独信号。第四类是零序过电流保护装置。这种继电保护装置主要属于变压器和系统气压元件的后背保护装置。
4讨论
电力系统运行的安全直接关系到社会的各行各业,也与人们的日常生活安全及生命财产安全等息息相关。近年来,随着社会经济的不断发展,在电力系统建设中1000MW的发单机组被广泛的应用。虽然,1000MW机组能够产生巨大的威力,但实际运行过程中也很容易出现各种故障,严重威胁电力系统的安全。因此,火力发电厂1000MW机组中设置针对性的继电保护装置十分必要,不仅可以减少故障的发生几率,还能够提高电力系统运行的安全性和可靠性。
参考文献
[1]解智钧.火力发电厂1000MW机组继电保护技术探讨[J].科技传播,2014(06):145+61.
[2]常滨,张学源,刘敬.浅谈火力发电厂1000MW机组继电保护技术[J].科技创新导报,2012(14):75.
关键词:继电保护运行现状发展前景
1、我国电力系统
继电保护技术的发展现状继电保护技术是随着电力系统的发展而发展的,它与电力系统对运行可靠性要求的不断提高密切相关。熔断器就是最初出现的简单过电流保护,时至今日仍广泛应用于低压线路和用电设备。由于电力系统的发展,用电设备的功率、发电机的容量不断增大,发电厂、变电站和供电网的结线不断复杂化,电力系统中正常工作电流和短路电流都不断增大,熔断器已不能满足选择性和快速性的要求,于是出现了作用于专门的断流装置的过电流继电器。本世纪初随着电力系统的发展,继电器才开始广泛应用于电力系统的保护。这个时期可认为是继电保护技术发展的开端。
自本世纪初第一代机电型感应式过流继电器(1901年)在电力系统应用以来,继电保护已经经历了一个世纪的发展。在最初的二十多年里,各种新的继电保护原理相继出现,如差动保护(1908年)、电流方向保护(1910年)、距离保护(1923年)、高频保护(1927年),这些保护原理都是通过测量故障发生后的稳态工频量来检测故障的。尽管以后的研究工作不断发展和完善了电力系统的保护,但是这些保护的基本原理并没有变,至今仍然在电力系统继电保护领域中起主导作用。
继电保护装置是保证电力系统安全运行的重要设备。满足电力系统安全运行的要求是继电保护发展的基本动力。快速性、灵敏性、选择性和可靠性是对继电保护的四项基本要求。为达到这个目标,继电保护专业技术人员借助各种先进科学技术手段作出不懈的努力。经过近百年的发展,在继电保护原理完善的同时,构成继电保护装置的元件、材料等也发生了巨大的变革。继电保护装置经历了机电式、整流式、晶体管式、集成电路式、微处理机式等不同的发展阶段。
50年代,我国工程技术人员创造性地吸收、消化、掌握了国外先进的继电保护设备性能和运行技术,建成了一支具有深厚继电保护理论造诣和丰富运行经验的继电保护技术队伍,对全国继电保护技术队伍的建立和成长起了指导作用。阿城继电器厂引进消化了当时国外先进的继电器制造技术,建立了我国自己的继电器制造业。因而60年代是我国机电式继电保护繁荣的时代,为我国继电保护技术的发展奠定了坚实基础。
自50年代末,晶体管继电保护已在开始研究。60年代中到80年代中是晶体管继电保护蓬勃发展和广泛采用的时代。在此期间,从70年代中,基于集成运算放大器的集成电路保护已开始研究。到80年代末集成电路保护已形成完整系列,逐渐取代晶体管保护。到90年代初集成电路保护的研制、生产、应用仍处于主导地位,这是集成电路保护时代。
国内微机保护的研究开始于70年代末期,起步较晚,但发展很快。1984年我国第一套微机距离保护样机在试运行后通过鉴定并批量生产,以后每年都有新产品问世;1990年第二代微机线路保护装置正式投入运行。目前,高压线路、低压网络、各种主电气设备都有相应的微机保护装置在系统中运行,特别是线路保护已形成系列产品,并得到广泛应用。我国在2000年220kV及以上系统的微机保护率为43.99%,线路微机保护占86%,到2003年底,220kV以上系统的微机保护已占到70.29%,线路的微机化率达到97.6%。实际运行中,微机保护的正确动作率要明显高于其他保护,一般比平均正常动作率高0.2~0.3个百分点。国产微机保护经过多年的实际运行,依靠先进的原理和技术及良好的工艺已全面超越进口保护。从80年代220KV及以上电压等级的电力系统全部采用进口保护,到现在220KV系统继电保护基本国产化,反映了继电保护技术在我国的长足发展和国产继电保护设备的明显优势。
微机继电保护技术的成熟与发展是近三十年来继电保护领域最显著的进展。经过长期的研究和实践,现在人们已普遍认可了微机保护在电网中无可替代的优势。微机保护具有自检功能,有强大的逻辑处理能力、数值计算能力和记忆能力,并且具备很强的数字通信能力,这一切都是电磁继电器、晶体管继电器所难以匹敌的。计算机技术的进步,更高性能、更高精度的数字器件的采用,一直是微机继电保护不断发展的强大动力。
2、微机继电保护的主要特点
微机保护充分利用了计算机技术上的两个显著优势:高速的运算能力和完备的存贮记忆能力,以及采用大规模集成电路和成熟的数据采集,A/D模数变换、数字滤波和抗干扰措施等技术,使其在速动性、可靠性方面均优于以往传统的常规保护,而显示了强大生命力,与传统的继电保护相比,微机保护有许多优点,其主要特点如下:
1)改善和提高继电保护的动作特征和性能,正确动作率高。主要表现在能得到常规保护不易获得的特性;其很强的记忆力能更好地实现故障分量保护;可引进自动控制、新的数学理论和技术,如自适应、状态预测、模糊控制及人工神经网络等,其运行正确率很高,已在运行实践中得到证明。
2)可以方便地扩充其他辅助功能。如故障录波、波形分析等,可以方便地附加低频减载、自动重合闸、故障录波、故障测距等功能。
3)工艺结构条件优越。体现在硬件比较通用,制造容易统一标准;装置体积小,减少了盘位数量;功耗低。
4)可靠性容易提高。体现在数字元件的特性不易受温度变化、电源波动、使用年限的影响,不易受元件更换的影响;且自检和巡检能力强,可用软件方法检测主要元件、部件的工况以及功能软件本身。
5)使用灵活方便,人机界面越来越友好。其维护调试也更方便,从而缩短维修时间;同时依据运行经验,在现场可通过软件方法改变特性、结构。
6)可以进行远方监控。微机保护装置具有串行通信功能,与变电所微机监控系统的通信联络使微机保护具有远方监控特性。
3、未来继电保护技术的发展前景
微机保护经过近20年的应用、研究和发展,已经在电力系统中取得了巨大的成功,并积累了丰富的运行经验,产生了显著的经济效益,大大提高了电力系统运行管理水平。近年来,随着计算机技术的飞速发展以及计算机在电力系统继电保护领域中的普遍应用,新的控制原理和方法被不断应用于计算机继电保护中,以期取得更好的效果,从而使微机继电保护的研究向更高的层次发展,其未来趋势向计算机化,网络化,智能化,保护、控制、测量和数据通信一体化发展。
3.1微计算机硬件的更新和网络化发展在计算机领域,发展速度最快的当属计算机硬件,按照著名的摩尔定律,芯片上的集成度每隔18~24个月翻一番。其结果是不仅计算机硬件的性能成倍增加,价格也在迅速降低。微处理机的发展主要体现在单片化及相关功能的极大增强,片内硬件资源得到很大扩充,单片机与DSP芯片二者技术上的融合,运算能力的显著提高以及嵌入式网络通信芯片的出现及应用等方面。这些发展使硬件设计更加方便,高性价比使冗余设计成为可能,为实现灵活化、高可靠性和模块化的通用软硬件平台创造了条件。硬件技术的不断更新,使微机保护对技术升级的开放性有了迫切要求。网络特别是现场总线的发展及其在实时控制系统中的成功应用充分说明,网络是模块化分布式系统中相互联系和通信的理想方式。如基于网络技术的集中式微机保护,大量的传统导线将被光纤取代,传统的繁琐调试维护工作将转变为检查网络通信是否正常,这是继电保护发展的必然趋势。微机保护设计网络化,将为继电保护的设计和发展带来一种全新的理念和创新,它会大大简化硬件设计、增强硬件的可靠性,使装置真正具有了局部或整体升级的可能。
继电保护的作用不只限于切除故障元件和限制事故影响范围(这是首要任务),还要保证全系统的安全稳定运行。这就要求每个保护单元都能共享全系统的运行和故障信息的数据,各个保护单元与重合闸装置在分析这些信息和数据的基础上协调动作,实现微机保护装置的网络化。这样,继电保护装置能够得到的系统故障信息愈多,对故障性质、故障位置的判断和故障距离的检测愈准确,大大提高保护性能和可靠性。
3.2智能化进入20世纪90年代以来,人工智能技术如神经网络、遗传算法、进化规划、模糊逻辑等在电力系统各个领域都得到了应用,电力系统保护领域内的一些研究工作也转向人工智能的研究。专家系统、人工神经网络(ANN)和模糊控制理论逐步应用于电力系统继电保护中,为继电保护的发展注入了活力。
人工神经网络(ANN)具有分布式存储信息、并行处理、自组织、自学习等特点,其应用研究发展十分迅速,目前主要集中在人工智能、信息处理、自动控制和非线性优化等问题。近年来,电力系统继电保护领域内出现了用人工神经网络(ANN)来实现故障类型的判别、故障距离的测定、方向保护、主设备保护等。例如在输电线两侧系统电势角度摆开情况下发生经过渡电阻的短路就是一非线性问题,距离保护很难正确作出故障位置的判别,从而造成误动或拒动;如果用神经网络方法,经过大量故障样本的训练,只要样本集中充分考虑了各种情况,则在发生任何故障时都可正确判别。其它如遗传算法、进化规划等也都有其独特的求解复杂问题的能力。将这些人工智能方法适当结合可使求解速度更快。可以预见,人工智能技术在继电保护领域必会得到应用,以解决用常规方法难以解决的问题。
3.3自适应控制技术在继电保护中的应用自适应继电保护的概念始于20世纪80年代,它可定义为能根据电力系统运行方式和故障状态的变化而实时改变保护性能、特性或定值的新型继电保护。自适应继电保护的基本思想是使保护能尽可能地适应电力系统的各种变化,进一步改善保护的性能。这种新型保护原理的出现引起了人们的极大关注和兴趣,是微机保护具有生命力和不断发展的重要内容。自适应继电保护具有改善系统的响应、增强可靠性和提高经济效益等优点,在输电线路的距离保护、变压器保护、发电机保护、自动重合闸等领域内有着广泛的应用前景。针对电力系统频率变化的影响、单相接地短路时过渡电阻的影响、电力系统振荡的影响以及故障发展问题,采用自适应控制技术,从而提高保护的性能。对自适应保护原理的研究已经过很长的时间,也取得了一定的成果,但要真正实现保护对系统运行方式和故障状态的自适应,必须获得更多的系统运行和故障信息,只有实现保护的计算机网络化,才能做到这一点。
3.4变电所综合自动化技术现代计算机技术、通信技术和网络技术为改变变电站目前监视、控制、保护和计量装置及系统分割的状态提供了优化组合和系统集成的技术基础。高压、超高压变电站正面临着一场技术创新。实现继电保护和综合自动化的紧密结合,它表现在集成与资源共享、远方控制与信息共享。以远方终端单元(RTU)、微机保护装置为核心,将变电所的控制、信号、测量、计费等回路纳入计算机系统,取代传统的控制保护屏,能够降低变电所的占地面积和设备投资,提高二次系统的可靠性。
综合自动化技术相对于常规变电所二次系统,主要有以下特点:
1)设备、操作、监视微机化。综合自动化系统的各个子系统全部微机化,其内涵中还包括系统的功能软件化和信号数字化的内容,完全摒弃了常规变电所中各种机电式、机械式、模拟式设备,大大提高了二次系统的可靠性和电气性能。操作、监视完全微机化,且方便地通过人机联系系统(MMI)对变电所实施监视和控制。
2)通信局域网络化、光缆化。计算机局域网络技术和光纤通信技术在综合自动化系统中得到普遍的应用。因此,系统具有较高的抗电磁干扰的能力,能够实现高速数据传输,满足实时性要求,组态更灵活,易于扩展,可靠性大大提高,而且大大简化了常规变电所繁杂量大的各种电缆,方便施工。
3)运行管理智能化。智能化的表现是多方面的,除了常规自动化功能以外,如自动报警、报表生成、电压无功调节、小电流接地选线、故障录波、事故判别与处理等方面,还具有强大的在线自诊断功能,并实时地将其送往调度(控制)中心,即以主动模式代替了常规变电所的被动模式,这一点是与常规二次系统最显著的区别之一。
竞争的电力市场将促进新的自动化技术的开发和应用,在经济效益的驱动下,变电站将向集成自动化方向发展。根据变电站自动化集成的程度,可将未来的自动化系统分为协调型自动化和集成型自动化。协调型自动化仍然保留间隔内各自独立的控制、保护等装置,各自采集数据并执行相应的输出功能,通过统一的通信网络与站级相连,在站级建立一个统一的计算机系统,进行各个功能的协调。而集成型自动化既在间隔级,又在站级对各个功能进行优化组合,是现代控制技术、计算机技术和通信技术在变电站自动化系统的综合应用。所谓集成型自动化系统是将间隔的控制、保护、故障录波、事件记录和运行支持系统的数据处理等功能集成在一个统一的多功能数字装置内,间隔内部和间隔间以及间隔同站级间的通信用少量的光纤总线实现,取消传统的硬线连接。总体来说,综合自动化系统打破了传统二次系统各专业界限和设备划分原则,改变了常规保护装置不能与调度(控制)中心通信的缺陷,给变电所自动化赋予了更新的含义和内容,代表了变电所自动化技术发展的一种潮流。随着科学技术的发展,功能更全、智能化水平更高、系统更完善的超高压变电所综合自动化系统,必将在我国电网建设中不断涌现,把电网的安全、稳定和经济运行提高到一个新的水平。
4、结束语
我国电力系统继电保护技术的发展经历了4个阶段。随着电力系统的高速发展和计算机技术、通信技术的进步,继电保护技术面临着进一步发展的趋势。其发展将出现原理突破和应用革命,由数字时代跨入信息化时代,发展到一个新的水平。这对继电保护工作者提出了艰巨的任务,也开辟了活动的广阔天地。
参考文献
1、杨奇逊,微型机继电保护基础,北京:水利电力出版社,1988.
2、吴斌,刘沛,陈德树,继电保护中的人工智能及其应用,电力系统自动化,1995(4)。
3、张宇辉,电力系统微型计算机继电保护,北京:中国电力出版社,2000.
4、葛耀中,新型继电保护与故障测距原理与技术,西安:西安交通大学出版社,1996.
5、葛耀中,自适应继电保护及其前景展望,电力系统自动化,1997,21(9):42~46.
6、杨奇逊,变电站综合自动化技术发展趋势,电力系统自动化,1995,19(10):7~9.
关键词:电力系统;智能电网;继电保护
DOI:10.16640/ki.37-1222/t.2016.24.151
1电力系统中智能电网继电保护重要性和智能电网特征
1.1电力系统中智能电网继电保护重要性分析
我国的经济在当前有了很大程度进步,在对电力的需求方面也不断加大,这对电力企业来说就有着很大的压力。保障电力的正常供应是电力企业所致力于完成的重要任务,但由于我国的地域辽阔以及用电量的逐年增大,电力紧缺的问题也愈来愈突出[1]。有的地区则不得不采取紧急停电的方式来环节用电的压力。在对电力系统的安全维护过程中,继电保护是比较常用的,也是比较有效的方法,这对电力系统的正常用电就有着积极保障作用。
智能电网中继电保护的技术应用,能在最小区域内以及在最短的时间内对电力系统当中的故障及时性的解决,并能及时性的进行电力系统运行的监控,从而节省了很大的人力。能够对电力监控的整体效率水平得以有效提高,最大程度减少电力元件的损坏等。通过继电保护技术的应用,就能有助于继电保护装置性能的提高,对整体的电力系统安全运行就有着保障作用。
1.2电力系统中智能电网特征分析
从电力系统中智能电网自身的特征来看,在网络化的特征上就比较突出。数字化的变电站网络化目标实现,能够在电力系统运行的信息获得上较为方便化,这是继电保护的重要功能。网络数据的传输过程中,在共享性方面的特征也比较突出,能够对全站的设备信息进行获得以及共享[2]。在网络化的特征方面,对信息的发送也比较快速,能有助于信息传输效率的整体水平提高。
电力系统中智能电网的特征还体现在广域化特征以及输电的灵活化特征层面。电网信息化建设的完善,在继电保护信息的专用网络建设方面也得到了有效加强,这些都已经成为智能电网控制的重要环节,对自动装置性能的提高也有着积极促进作用。在智能电网的应用下,就能使得输电的灵活性目标得到了有效实现,对输电的整体效率得到了有效提高。
电力系统当中的智能电网的数字化特征也比较鲜明,也是最为基础的特征。继电保护的技术应用下,能够使得测量的手段能够数字化的呈现,以及对信息传输的方式上也能数字化的呈现。在当前我国的电网建设工作中,以及在智能化的仪器和设备的推广下,传统的互感器设备已经逐渐的被淘汰,对新的电子式互感器网络接口的应用就逐渐的流行,在网络的保护装置下,以及智能断路器的连接下,就能够对二次回路接线得以有效的简化,从而在保护功能上就能充分的发挥。
2电力系统中智能电网继电保护主要技术分析
2.1电力系统中智能电网继电保护的主要构成分析
从电力系统当中的智能电网继电保护的主要构成来看,随着信息技和通讯技术的迅速发展,对继电保护技术的发展就起到了重要促进作用。在智能电网下的继电保护技术对输配电以及发电供电等设备的监控和运行信息的收集功能,都能得到良好呈现,从而就为智能电网的运行状况良好保持有着促进作用[3]。智能化电网继电保护技术的自我隔离功能以及自我修复和自我诊断等功能,也能在具体的应用过程中发挥积极作用。
2.2电力系统中智能电网继电保护主要技术
从电力系统当中的智能电网继电保护的主要技术层面来看,其中在保护系统重构技术方面是比较重要的保护技术。在当前的智能电网发展过程中,对继电保护自适应装置的优化也有着要求,而保护系统重构技术就是比较突出的应用技术,继电保护系统自身的自我诊断和重构功能,能够有有助于电力系统运行的安全保障,在对继电保护元件不能正常工作下,可主动的找到替代元件进行恢复运行功能,对继电保护装置的作用也能有效的发挥。在电力系统中智能电网继电保护技术中的保护系统重构技术,要能对其充分的重视。
智能电网继电保护技术当中的广域保护技术也是比较突出的应用技术。在这一应用技术方面,和电力网络系统子集相类似,能够将子集作为是分析以及处理电网故障的最小单位,并在相应控制范围内实施信息的采集以及处理工作。在广域保护技术的实施下,就能对实际故障的原因方便找到,并进行及时有效的解决。
电力系统当中智能电网继电保护的主要技术当中,电子互感器以及智能终端以及合并单元设备技术也是比较关键的应用技术。例如在电子式互感器的设备应用下,就能够对计量的需求得以满足,也能直接输出数字信号到其他智能设备当中,从而就能有助于实际智能电网需求的满足。
风偏检测技术及通信传感技术。随着配电网络区域的扩大,进行智能继电建设中,受气象因素的影响较大。风偏检测装置主要安置在配电网络的主导线上,采集气象参数、倾斜等,将检测结果反馈给电力部门,为相关部门的电路设计提供依据。通信传感技术是智能电网实现电网保护的基本条件。智能电网具有自愈性的特点,即在实际运行的过程中,智能电网通过对电网感应,加强对电流运行动态的监控,及时反馈电路故障数据,并采取相应的手段对电路故障进行处理。
3结语
总而言之,对当前的电力系统中智能电网继电保护技术的应用,就要能够和实际电力系统运行的情况相结合,在选用应用技术方面能够恰当的呈现,并要能充分注重智能电网继电保护技术的优化应用。通过从理论上加强电力系统中智能电网继电保护技术的研究分析,对实际的技术作用发挥就有着积极促进作用。
参考文献:
[1]廖剑锋.浅谈电力继电保护技术现状及发展趋势[J].科技风,2016(02).
[2]关世照.浅析高压直流输电线路继电保护技术[J].科技风,2016(07).
关键词:电力系统;继电保护装置;应用;发展
中图分类号:U224.4文献标识码:A文章编号:
引言:
随着我国电力需求的不断增长,电力工程的负荷不断加大。在这样的情况下,电力系统的继电保护装置显得尤为重要。继电保护装置的应用使得电力系统有了更加安全的保障,能够实现电力系统故障最小化目的,实现电力系统经济性的提高。近年来,随着计算机技术、单片机技术以及网络技术在继电保护应用中技术日趋成熟。
1.电力系统继电保护的意义
随着我国近年来经济步伐的快速向前,对电力的需求量日益增大,从而全国各地不同程度地出现了电力供应紧张局面,甚至有些地区不得不采取限电、停电等措施来缓解电力供应的紧张局势。因此,加强对电力系统的安全维护至关重要,而继电保护正是其中主要的保护手段之一。
1.1继电保护能够保障电力系统的安全以及正常运转情况。例如、当电力系统在运作过程中出现异常或故障时,继电保护技术能够在最短时间内自动、准确地从整个电力系统中切除故障设备,或者直接向电力监控警报系统发出信息,提醒电力维护人员及时解决故障,从而有效地防止其中电力设备的烧毁和损伤,甚至可以降低相邻地区供电受相应故障影响的概率。此外,通过继电保护技术还可以有效地防止电力系统由于各种原因,而产生的面积广、时间长的停电事故;
1.2继电保护的顺利正常运作,可以有效消除电力故障的同时,还能够对社会生活秩序的正常化,经济发展的正规化做出了贡献,从而还能够确保社会生活和经济的正常运转,进而间接地为社会的稳定与人们生命财产的安全提供可靠保障。
2.电力系统继电保护技术应用现状
2.1根据电力系统实际需求进行设备选型
电力系统继电保护装置的应用中,如何根据系统需求进行设备选型是继电保护技术应用的基础。首先,电力系统的继电保护装置应当能够履行其功能与任务。通过继电保护装置实现系统运行状况监测、实现电力系统故障自动切除等任务需求。随着现代网络监控系统在继电保护中的应用,继电保护装置还应能够支持网络监控系统,实现现代电力系统自动化、网络化监控需求。因此,现代电力系统继电保护装置应用中,应从电力系统继电保护功能基本需求人手进行设备的选型。同时注重继电保护装置选择性、灵敏性、速动性与可靠性的分析与评价。选择适宜的设备型号与品牌实现继电保护装置功能,保障电力系统的稳定运行。
2.2电力系统继电保护功能应用
在现代电力系统设备继电保护应用中,主要应用继电保护装置的线路保护功能、母联保护功能、主变保护功能以及电容器保护等几方面。利用继电保护装置的功能实现了电力系统输变电过程中变电站设备的保护,减少了变电站故障造成的经济损失。首先,继电保护装置采用二段或三段式的电流保护,有效的预防了短路等情况是对设备的损坏。其次,母联保护、主变保护等利用继电保护装置保护了输变电设备,预防了电路故障造成的设备损害。通过继电保护装置的应用以及现代微电脑处理技术下的继电保护装置实现了自动监控、快速保护断开等功能,有效地保障了电力系统输变电设备的安全。
2.3针对现代网络化需求的继电保护技术应用分析
随着现代自动化技术的不断发展,电力系统继电保护技术应用中也引入了计算机技术、网络技术以及综合自动化技术。通过多项技术的引入与应用实现了现代电力系统继电保护装置智能化、网络化等需求。首先,继电保护装置引入单片机技术,实现了微机化继电保护应用。利用单片机技术使继电保护装置正确动作率得到提升。电力系统继电保护装置应用与发展中,变电设备计算机系统也需要相应的保护功能。因此,引入单片机、计算机技术的继电保护装置利用快速数据处理以及通信功能实现对变电设备计算机系统的保护。并利用网络通信功能模块方便中心监控人员的监控与故障信息收集。在现代电力系统继电保护应用过程中,计算机技术的应用已经成为促进继电保护技术发展、促进电力系统稳定供电的重点。
3.电力系统继电保护发展趋势
相关数据表明,我国电力系统继电保护技术的发展是得益于电力系统的发展而发展起来的,同时,电力系统对运行安全性和可靠性的要求不断提高,从而继电保护技术将面临着新的挑战与机遇,需要不同的革新与发展才能适应当前社会发展的需要。因此,随着科技时代的来临,我国的继电保护技术将会向智能化、网络化、控制、保护、测量和数据通信一体化方向发展,并将不断向着新技术、高利润领域渗透。
3.1网络化发展趋势
计算机网络作为信息和数据通信工具已成为信息时代的技术支柱,使人类生产和社会生活的面貌发生了根本变化,它深刻影响着各个工业领域并为之提供了强有力的通信手段。多年来,继电保护的作用也只限于切除故障元件、缩小事故影响范围,这主要是由于缺乏强有力的数据通信手段。随着电力系统发展的要求及通信技术在继电保护领域应用的深入,继电保护的作用不只限于切除故障元件和限制事故影响范围(这是首要任务),还要保证全系统的安全稳定运行。这就要求每个保护单元都能共享全系统运行状态和故障信息的数据,各个保护单元与重合闸装置在分析这些信息和数据的基础上协调动作,确保系统的安全稳定运行。显然,实现这种系统保护的基本条件是将全系统各主要设备的保护装置用计算机网络连接起来,亦即实现微机保护装置的网络化。实现保护装置的计算机联网将使保护装置能够得到更多的系统故障信息,提高对电力系统故障性质、故障位置判断和故障测距的准确性。总之,微机保护装置网络化可大大提高继电保护的性能及可靠性,是微机保护发展的必然趋势。
3.2继电保护智能化
智能化进入20世纪90年代以来,人工智能技术如神经网络、遗传算法、进化规划、模糊逻辑等在电力系统各个领域都得到了应用,电力系统继电保护领域内的一些研究工作也转向人工智能的研究。专家系统、人工神经网络等逐步应用于电力系统继电保护中,为继电保护的发展注入了新的活力。人工神经网络具有分布式存储信息、并行处理、自组织、自学习等特点,其应用研究发展十分迅速,目前主要集中在人工智能、信息处理、自动控制和非线性优化等问题的研究。结合人工智能技术,分析不确定因素对智能诊断系统的影响,而提高诊断的准确率,是今后智能诊断发展的方向。
3.3控制、保护、数据通信、测量一体化
在实现继电保护的计算机化和网络化的条件下,保护装置实际上就是一台高性能、多功能的计算机,是整个电力系统计算机网络上的一个智能终端。它可以从网络上获取电力系统运行和故障的任何信息和数据,也可将它所获得的被保护元件的任何信息和数据传送给网络控制中心或任一终端。因此,每个微机保护装置不但可完成继电保护功能,而且在无故障正常运行情况下还可完成测量、控制、数据通信功能,亦即实现保护、测量、数据通信一体化。
电力系统作为一个庞大复杂的系统,各元件之间通过电或磁发生联系,任何元件发生故障都将在不同程度上影响系统的正常运行。继电保护作为电力技术的一环,它对保障电力系统安全运行、提高社会经济效益起到举足轻重的作用。电力系统由于其覆盖的地域极其辽阔、运行环境极其复杂以及各种人为因素的影响,电气故障的发生是不能完全避免的。在电力系统中的任何一处发生事故,都有可能对电力系统的运行产生重大影响,为了确保电力系统的正常运行。必须正确地设置继电保护设备。
4.结语
随着电力系统的迅速发展和计算机通信技术的进步,继电保护技术的发展向计算机化、网络化、一体化、智能化方向发展,这对继电保护工作者提出了新的挑战。只有对继电保护装置进行定期检查和维护,按时巡检其运行状况,及时发现故障并做好处理,保证系统无故障设备正常运行,提高供电可靠性。
参考文献:
[1]张健康.电力系统继电保护技术的现状及发展趋势[J].装备制造技术,2011,(02).
关键字继电技术发展现状运用
中图分类号:TM715文献标识码:A文章编号:
1继电保护技术发展现状
随着科学技术的进步,继电保护技术在微机保护装置中的运行,其中包括电力系统中的高压线路,低压线网络、各种主电气设备都有了较大程度的特别是线路保护已形发展,其运用范围还相当广泛,在2003年底线路的微机化率达高达97.6%。所以在实际运行中,微机保护的功能较为显著,这是电力系统的一场新技术的革新,只有技术进步,才能使继电保护更好,更全面的运用在电力系统中,经过了长期的发展继电保护技术在我国继电保护设备中具有自己独得的市场和优势。
2继电保护技术在电力系统中的特点
微机的保护是充分利用了计算机技术上的两个明显的优势:快速的运算能力和完善的存贮记忆的能力,以及采用大范围的集成电路以及相对成熟的数据采集,A/D模数的相应变换、数字滤波以及抗干扰措施的应用等技术,使其在速动上、可靠上均优越于平常的传统的常规保护,从而显示了强大生命力。与传统的继电保护相比,微机保护有许多优点,其主要特点如下:(1)优化和加速继电保护的动作特征以及性能,正确动作率不断的提高。同时能够保护常规设施不能够保护的特性;其优越的超强记忆力能很好地实现故障分量的保护;可以引进自动控制技术、新的数学理论知识,如自适应、状态预测、模糊控制及人工神经网络等,其运行的正确率相当高,已经在运行的实践中得到了证明。(2)比较方便的眼神其他的保护措施如故障录波、波形分析等等,可以自如地添加低频减载、自动重合闸、故障录波技术、故障测距技术等功能。(3)优化了工艺结构。硬件通用,制造时方便把握标准;体积小的装置,减少了屏位的数量;功耗较低。(4)可靠性比较稳定。主要是体现在数字元件的特性不容易受温度的变化、电源的波动、使用年限存在的影响,不容易受元件更换的影响;且自检和巡检的能力强,可用软件的方法检测主要元件、部件的工况以及功能软件本身。(5)使用起来灵活方便,人机界面越来越人性化。其维护调试也更加的方便,从而缩短维修时间;同时依据运行经验,在现场可通过软件方法改变特性、结构。可实现与安防监控。微机保护装置有串行通信的特性,与变电微机监控系统的通信联络有远方监控特性。
2继电保护技术的应用及分析
继电保护在电力系统中最首要作用就是及时的发现和切除故障并限制故障影响的范围。变电站继电保护主要是通过四个方面来发挥作用的,第一线路保护。线路保护即电流速断保护与限时电流速断保护,最后是过电流保护,这种方法被称为二段式或三段式电流保护。第二主变保护。主保护和后备保护统称为主变保护,重瓦斯保护和差动保护是主变保护,复合电压过流保护与过负荷保护统称为后备保护。第三母联保护。需同时装设限时电流速断保护和过电流保护。第四电容器保护。对电容器的保护包括过流保护、零序电压保护、过压保护及失压保护。
通过上述四种保护外,电力系统还要在第一时间得到故障发生时的信息,只有这样才能更好的保护电力系统正常和高效的运行,具有更高保护性能与可靠性。因此,各个保护单元与重合闸装置在分析这些信息和数据的基础上协调动作,实现微机保护装置的网络化,只有这样才能使继电保护中每个保护单元都应能共享全系统的运行和故障信息的数据,在第一时间发出警报,提示工作人员,及早的发现问题并及时解决,保障电力系统正常运转。
3.1电力系统中继电保护装置的缺点
由于长期的运行,电力系统继电保护装置可能会出现安全隐患,影响电力系统的运行这些隐患很可能导致电力系统无法运行,更有可能产生危及人身和财产安全主要有以下几种安全隐患
1信号回路隐患
灯、光子牌、光耦等设备这些将产生信号回路缺陷的现象,他们只要是在指示上发生误导信息,使工作人员发生错误的判断,因为这些设备长期暴晒在野外或经常冲击带电到时破损,这样的隐患是最基本的,只需要及时的更换新的,就可以有效的遏制。
2直流接地隐患
接地支路的接地点查找基本原则是先室外后室内,先电缆后装置,先老化设备后新设备。此外,在查找直流接地时,断开直流电源可能会对保护装置和二次回路有影响,要注意做好安全措施,必要时可瞬间打开跳闸压板。
3控制回路隐患
控制回路缺陷主要发生在断路器的操作回路,其二次接线涉及的元件和地点较多,主要由控制把手、指示灯、操作箱、断路器机构的跳合闸线圈、辅助接点及相关闭锁回路组成。控制回路缺陷一般发生在设备停送电、保护动作、自投装置或重合闸动作时。其主要原因如下:
(1)指示灯错误显示,把手操作失灵;
(2)闭锁回路接点异常;
(3)断路器主触头与二次辅助接点不配合;
(4)线路问题,没有及时发现与更改
(5)断路器操作机构存在问题;
(6)自投装置或重合闸相关回路存在问题;
(7)由于人为误操作造成保护误动或拒动。
3.2隐患的防患措施
要想采取预防措施,必须从源头开始进行改造、保护与维修,只有这样才能保证设备处于良好状态,防患于未然,其次,对每一起隐患都要做好总结分析,积累经验,防止相似隐患再次发生;再次,必须保证快速、安全地消除运行中出现的缺陷。在装置缺陷多、超期服役且功能不满足电网对110kV、220kV线路保护的要求时应及时更换微机线路保护,从而保证保护装置的正常运行,达到提高系统稳定的作用。除了在机器和设备上做好防患措施,还应全面提高工作人员的技术水平和防患意识,以及处理隐患的能力,只有这样才能全面彻底的放在隐患发生,把隐患降低到最小,才能是电力系统安全有效的运行。
4继电保护技术的发展趋势
4.1继电保护功能比较全面如今计算机的广泛应用以及在计算机辅助的帮助下,继电技术的功能性也会越来越多、越来越优越,可以根据故障的显性进行适当的控制以及运用。4.2显著的电子数据主动化特性凸显计算机数据处理方面自动化发展越来越快,继电保护技术的现代化发展也必然得到了充分的体现,即电子数据主动化性能必将得到显著的提高。4.3继电保护技术的运用方便灵活随着继电保护技术的广泛而又长远的应用,将使得电力线路维护调试变得更加方便快,因此我们可以建立通信一体化与智能一体化的方向,使计算机在算机普遍化、网络加速化,保护、控制、测量的基础上更灵活的运用和加载,只要这样才能更好的使电力系统高效发挥功能。
5结语继电保护在电力系统安全中发挥了不可替代的作用,被电力系统广泛的应用,可以称作电力系统最基础的一到防线,然而它又结合现在通信技术,运用更多的科学方法与技术使继电保护成为电力系统中不可或缺的构成因素。所以在实际运用中我们一到要做到运用加创新,只要这样,才能不断发展与进步。
参考文献
[1]宁建宇;电力系统继电保护技术发展探析;2012.5;69
[2]杜秉晓,王铁锋;继电保护技术在电力系统中的应用与发展;[J]科技创新与节能减排;144-145
关键词:电力系统;继电保护;技术;发展;研究
中图分类号:U224.4文献标识码:A
电力系统继电保护是在电网出现事故或异常运行情况下动作,保证电力系统和电气设备安全运行的自动装置,研究继电保护技术发展趋势,可以更好地提高继电保护的技术水平,对电力系统发展意义重大。
1电力系统继电保护概述
1.1继电保护基本概念
在电力系统运行中,由于外界因素和内部因素都可能引起各种故障及不正常运行的状态出现,常见的故障有:单相接地;三相接地;两相接地;相间短路;短路等。
电力系统非正常运行状态有:过负荷,过电压,非全相运行,振荡,次同步谐振,同步发电机短时异步运行等。电力系统继电保护和安全自动装置是在电力系统发生故障和不正常运行情况时,用于快速切除故障,消除不正常状况的重要自动化技术和设备。
1.2继电保护在电力系统中的任务
电力系统元件发生故障时,应该由该元件的继电保护装置迅速准确地给脱离故障元件最近的断路器发出跳闸命令,使故障元件及时从电力系统中断开,以最大限度地减少对电力系统元件本身的损坏,降低对电力系统安全供电的影响;并满足电力系统的某些特定要求,能够反应电气设备的不正常工作情况,并根据不正常工作情况和设备运行维护条件的不同发出信号,以便值班人员进行处理,或由装置自动地进行调整,或将那些继续运行会引起事故的电气设备予以切除。
2继电保护发展历程
继电保护是随着电力系统的发展而发展起来的,最早的继电保护装置是熔断器。从20世纪50年代到90年代末,在40余年的时间里,继电保护完成了发展的4个阶段,即从电磁式保护装置到晶体管式继电保护装置、到集成电路继电保护装置、再到微机继电保护装置。随着电子技术、计算机技术、通信技术的飞速发展,智能化等先进技术相继在继电保护领域的研究应用,继电保护技术向计算机化、网络化、一体化、智能化方向发展。电力系统发展迅速,电网结构越来越复杂,短路容量不断增大,到20世纪产生了作用于断路器的电磁型继电保护装置。1928年电子器件已开始被应用于保护装置,在50年代迅速发展。静态继电器有较高的灵敏度和动作速度、维护简单、寿命长、体积小、消耗功率小等优点,但环境温度和外界干扰对继电保护的影响较大。1965年出现了应用计算机的数字式继电保护,出现了单板机继电保护装置。到了21世纪由于计算机技术发展非常快,微处理机和微型计算机的普遍应用,极大地推动了数字式继电保护技术的开发,大规模集成化数字式继电保护装置应用非常广泛。
3电力系统继电保护的发展趋势
随着计算机技术的飞速发展以及计算机在电力系统继电保护领域中的普遍应用,新的控制原理和方法被不断应用于计算机继电保护中,以期取得更好的效果,从而使微机继电保护的研究向更高的层次发展,继电保护技术未来趋势是向计算机化,网络化,智能化,保护、控制、测量和数据通信——体化发展。
3.1计算机化
随着计算机硬件的迅猛发展,微机保护硬件也在不断发展。电力系统对微机保护的要求不断提高,除了保护的基本功能外,还应具有大容量故障信息和数据的长期存放空间,快速的数据处理功能,强大的通信能力,与其它保护、控制装置和调度联网以共享全系统数据、信息和网络资源的能力,高级语言编程等。这就要求微机保护装置具有一台PC机的功能。继电保护装置的微机化、计算机化是不可逆转的发展趋势。但对如何更好地满足电力系统要求,如何进一步提高继电保护的可靠性,如何取得更大的经济效益和社会效益,尚需进行具体深入的研究。
3.2网络化
计算机网络作为信息和数据通信工具已成为信息时代的技术支柱,它深刻影响着各个工业领域,也为各个工业领域提供了强有力的通信手段。除了差动保护和纵联保护外,所有继电保护装置都只能反应保护安装处的电气量,继电保护的作用主要是切除故障元件,缩小事故影响范围。因为继电保护的作用不只限于切除故障元件和限制事故影响范围,还要保证全系统的安全稳定运行。这就要求每个保护单元都能共享全系统的运行和故障信息的数据,各个保护单元与重合闸装置在分析这些信息和数据的基础上协调动作,确保系统的安全稳定运行。
3.3智能化
随着通信和信息技术的快速发展,数字化技术及应用在各行各业的日益普及也为探索新的继电保护原理提供了条件,智能电网中可利用传感器对发电、输电、配电、供电等关键设备的运行状况进行实时监控,把获得的数据通过网络系统进行收集、整合和分析。利用这些信息可对运行状况进行监测,实现对保护功能和保护定值的远程动态监控和修正。
4保证继电保护安全运行的措施
4.1做好常规巡视检查
不论何种保护,常规巡视检查都是非常重要的,清点连接件是否紧固焊接点是否虚焊机械特性等,将装置所有的插件拔下来检查一遍,将所有的芯片按紧,螺丝拧紧并检查虚焊点。在检查中,还必须将各元件保护屏、控制屏、端子箱的螺丝紧固作为一项重要工作来落实。
4.2做好继电保护装置检验
认真完成各类检验项目,在完成整组试验和电流回路升流试验,严禁再拔插件.改定值、改定值区、改变回路接线等工作。
4.3接地问题
继电保护工作中接地问题是非常突出的,保护屏的各装置机箱屏障等的接地问题,必须接在屏内的铜排上,保护屏内的铜排是否能可靠地接入地网,应该用较大截面的铜辫或导线可靠紧固在接地网上,并且用绝缘表测电阻是否符合规程要求。
结语
综上所述,随着电力系统的高速发展和计算机技术、通信技术的进步,继电保护技术面临着进一步发展的趋势。国内外继电保护技术发展的趋势为计算机化,网络化,保护、控制、测量、数据通信一体化和智能化,只有了解和掌握继电保护技术,才能更好地处理遇到的问题,保证电力系统安全运行。
参考文献
[1]国家电力调度通信中心.国家电网公司继电保护培训教材[M].北京:中国电力出版社.2009.
【关键词】主设备;继电保护
电气设备的继电保护主要是研究电力系统故障和危及安全运行的异常工况,以探讨其对策的反事故自动化措施。因在其发展过程中曾主要用有触点的继电器来保护电力系统及其元件(发电机、变压器、输电线路等),使之免遭损害,所以沿称继电保护。
随着科学技术的发展,特别是电子技术、计算机技术和通信技术的发展,电力系统继电保护先后经历了不同的发展时期。近10年来,电力工业突飞猛进,整个电力系统呈现出往超高电压等级、单机容量增大、大联网系统方向发展的趋势,这就对主设备保护的可靠性、灵敏性、选择性和快速性提出了更高的要求。
1.电气主设备保护的现状
以往电力系统大型主设备(包括发电机、变压器、母线、高压并联电抗器等)继电保护与超高压线路继电保护相比,处于一种相对滞后的状态,主设备保护正确动作率一直较低,与线路保护相比有较大差距。
近年来主设备保护的分析计算方法取得了很大进展,比如采用多回路分析法可以比较精确地计算发电机的内部故障,主设备内部故障保护的配置具备了理论基础[1,2]。利用真实反应主设备内部各种故障及异常工况的动模系统和仿真系统检验主设备保护,极大地提高了新原理新技术的验证水平。随着基于新硬件平台的数字式主设备保护的推陈出新,实现了主设备保护双主双后的配置方案,保护的设计方案、配置原则趋于完善,同时,新原理和新技术的应用也大大提高了主设备保护的安全运行水平。
1.1主设备保护的双重化配置和主后一体化趋势
近年来,双主双后保护配置方案逐渐应用到主设备保护的领域,尤其是国电调[2002]138号文件《防止电力生产重大事故的二十五项重点要求》继电保护实施细则对主设备保护的双重化作出规定后,双主双后保护方案成为主设备保护研制、设计的指导准则,并为现场运行提供了极大的方便。
双主双后的保护实现方式是针对一个被保护对象,配置2套独立的保护。每套保护均包含主后备保护,并且每套保护由2个CPU系统构成。2个CPU系统之间均能进行完善的自检和互检,出口方式采用2个CPU系统“与”门出口。这种配置方案概念清晰,彻底解决了保护拒动和误动的矛盾,即双重化配置解决了拒动问题,双CPU系统“与”门出口解决了硬件故障导致的误动问题。这种思想已成功地应用到主设备保护上,大大提高了主设备保护的运行水平。
1.2主设备保护的新原理
近年来,主设备保护通过对故障过程的电磁暂态过程的研究、TA饱和特性的研究、内部故障理论分析,结合实际动模和数字仿真,提出了一些新的原理并已在现场广泛应用。
1.2.1差动保护
常规的两折线、三折线比率差动、标积制动式差动、采样值差动等已在很多文献中有所介绍。
1.2.2关于励磁涌流
目前在工程上应用的判别励磁涌流的原理都是从涌流波形与短路电流波形的不同特征入手,来区分励磁涌流与短路的。各种涌流判别原理都具有在故障合闸时,保护动作时间长或动作时间离散度大的缺点。
1.2.3关于TA饱和
TA饱和问题是主设备保护共同面对的问题。由于大型发电机变压器组容量大,故障电流非周期分量衰减时间常数长,可能引起差动保护各侧TA传变暂态不一致或饱和。对于变压器,各侧TA特性不一致,更易引起TA饱和,这样可能会造成在区外发生故障时差动保护误动对于母线近端发生区外故障时,TA也会严重饱和。因此差动保护需有可靠的TA饱和判据。
针对TA饱和问题,国内外也提出了一些识别TA饱和的办法:采用附加额外的电路来检测TA饱和,缺点是现场工程应用很不方便;提高定值,缺点是降低了内部故障的灵敏度;采用流出电流判据的标积式比率差动,理论计算表明当发电机发生某些内部故障时,也有流出电流,存在拒动的可能性。
2.主设备保护的发展趋势
2.1保护装置的一体化发展
(1)充分的资源共享,一个装置包含了被保护元件所有的模拟量,保护逻辑的判据可以充分利用所有电气量,使保护更加完善、可靠,判据更加灵活实用。
(2)主后一体化装置,给故障录波、后台分析带来了便利。任何一个故障启动或动作保护装置就可以录下整个单元所有模拟量,使得现场故障的综合分析、定性及事故处理更加方便,而分体式保护只能录下部分信息。
(3)主后一体化装置便于保护双重化的实现。主后共用一组TA,TA断线概率大大下降;装置数量少,误动概率降低。
2.2新型光电流互感器、光电压互感器的应用
传统的电磁式TA是一种非线性电流互感器,具有铁磁谐振、磁饱和、绝缘结构复杂、动态范围小、使用频带窄、铜材耗费大,远距离传送造成电位升高等问题。
新型光电流互感器(OTA)、光电压互感器(OTV)相对于电磁式TA具有明显的技术优势:不存在饱和问题,频率响应宽,动态范围大,在很大的电流变化区间内保持线性变换关系;实现了强电和弱电的完全绝缘隔离,具有很强的抗电磁干扰能力;不存在二次开路的问题,二次输出值较小,适合与保护直接接口。因此其将成为主设备微机保护的发展趋势。
2.3信息网络化
变电站监控和发电厂电气监控系统的发展,要求主设备保护具有强大的通信功能,以便通过监控系统实现保护动作报文管理、故障数据处理、定值远方整定、事故追忆等功能,实现了电气智能设备运行的深层次管理。
在采用高速度、大容量的微处理器及高速总线设计后,保护装置将具有更完善的数据处理功能和通信功能,可以更好地实现保护信息化、网络化设计。主设备保护除了动作后经通信网络上传故障报文、数据到监控系统以外,还可以为系统动态提供保护装置的运行状态和信息,并可根据系统运行方式的变化通过数据交换,提供修改保护判据和定值的依据,保证全系统的安全稳定运行。
2.4故障分析技术
新一代主设备保护必须具有强大的故障录波功能,除了记录完整的事件报文、故障数据外,装置还可以记录故障发生前后全过程所有的模拟量、开关量、启动量、中间量的变化,完整地记录每个保护的动作行为。主设备保护的故障信息上传至电气监控系统或保护信息管理系统后,通过高级应用软件,分析保护的动作行为是否正确,为故障查找、分析提供充分的依据。完整的故障数据经数字仿真系统可实现主设备的故障再现,对事故进行深入分析,为保护性能的改进完善提供重要的依据。
2.5信息网络技术
当代继电保护技术的发展,正在从传统的模拟式、数字式探索着进入信息技术领域。在变电站综合自动化方面,保护的配置比较灵活。如果变电站综合自动化采用传统模式,也就是远方终端装置(RTU)加上当地监控系统,这时候,保护装置的信息可以通过遥信输入回路进入RTU,也可以通过串行口与RTU按照约定的通信规约进行信息传递。
3.结束语
随着电力系统容量日益增大,范围越来越广,仅设置系统各元件的继电保护装置,远不能防止发生全电力系统长期大面积停电的严重事故。为此必须从电力系统全局出发,进行电气设备继电保护的相关研究。
【参考文献】
关键词:继电保护;自动化技术;电力系统;电压变化系统;发电系统;配电系统文献标识码:A
中图分类号:TM76文章编号:1009-2374(2016)25-0066-02DOI:10.13535/ki.11-4406/n.2016.25.031
电力系统由电压变化系统、发电系统、配电系统、母线以及电气设备等部分组成,继电保护系统的作用是在线路出现故障时能够及时切除故障点,避免事态进一步扩大。自动化继电保护装置能够在电力系统发生故障的0.1s以内快速反应切除故障线路,对电力系统起到保护作用,提高系统运行的稳定性和安全性。
1继电保护自动化技术
1.1原理与类型
1.1.1工作原理。继电保护装置有测量模块、逻辑模块以及执行模块三部分,继电器测量模块接收传入信号,并将测量值和定值比较,将比较结果传输给逻辑模块,继电器逻辑模块再根据接收装置发送来输出值的性质、次序、大小等相关参数计算获得逻辑值,根据逻辑值确定动作是否合理,再将激励动作或者静止动作信号传递给执行模块,执行模块接受到指令信号之后再做出对应的动作。
1.1.2继电器类型。电力系统使用的继电器有多种结构形式,可以分为电磁型、静态型、感应型、整流型等,并且继电器有着多种不同的功能,具体可以细分为测量和辅助两类,测量继电器用于测量了解电气量变化,根据继电器测量电气量的种类不同,测量继电器可以进一步细分为电压、电流、频率和功率测量继电器。辅助继电器的功能是保护电力系统,有中间、事件和信号三种类别。
1.2电力系统自动化继电保护系统的作用
继电保护自动化技术是一种电力系统中应用十分普遍的电力系统维护技术,电力系统规模大、跨度广,暴露在自然环境中,长期运行中各种精密设备容易出现故障,如果不经过及时有效的处理,故障可能进一步发展,导致线路上大量设备烧损,带来巨大的经济损失,影响正常供电。自动化继电保护系统能够在电力设备出现故障时在事态进一步扩大之前迅速切除故障点和故障线路,确保系统无故障部分能够继续工作,缩小故障点导致的停电范围,并发出告警,使维修工作人员能够在第一时间了解故障点位置和故障类型,加快维修进度。与此同时,自动继电保护系统还具有监控功能,能够自动采集电力设备各项运行参数,了解电力设备的健康状态,为电力系统的运行维护工作提供参考依据。电力元件出现故障,继电保护装置将能够根据预设逻辑正确响应,及时跳闸消除线路浪涌。
2继电保护自动化技术在电力系统中的应用
从接地保护、变压器保护以及发电机组保护等方面,对继电保护自动化技术在电力系统中的应用进行了探讨。
2.1接地保护
电力系统不同线路有着不同的接地方式,主要有小电流接地、大电流接地两种,小电流接地保护以发出保护信号为主要功能,接入小电流接地系统的电路在出现故障时,接地系统将发出告警信号,而线路在一定时间内将继续运行,而大电流接地系统则在线路故障时立即响应,切断线路,保护系统。其中大电流接地系统更多应用于自动化继电保护系统的执行系统,而小电流接地系统在逻辑层的应用更加广泛,电力系统正常运行过程中并没有零序电压,而且三相电压对称分布,接在三相上的电压表都可以独立显示电压,电力系统出现故障,某一相接地,电力系统就会显示出零序电压,小电流继电保护系统就会发出告警信息,观察电压表读数就能够判断是否出现了故障。零序电流是指电力系统在正常运行过程中不会出现零序电流,而系统出现故障时,零序电流值不再为零,继电保护装置将响应,切除故障电路。除此之外,还有零序功率保护。
2.2变压器继电保护
变压器是电力系统中十分重要的核心设备,变压器的运行状态对整个电力系统运行稳定性有着巨大的影响,现阶段,变压器的继电保护主要有接地保护、瓦斯保护、短路保护三类。
2.2.1接地保护。直接接地保护变压器采用零序电流保护方案,变压器接地线上安装零序保护装置,不接地保护的电压器可改用零序电压保护。
2.2.2瓦斯保护。变压器油箱出现故障时,绝缘油和绝缘材料可能会在电弧作用下发生分解而产生易燃易爆的危险气体,因此瓦斯保护成为了电压器保护的重点,油箱出现闪络电弧故障时,继电保护装置能够立即切除变压器电源,并发出告警信息。
2.2.3短路保护。变压器短路保护分为过电流保护和阻抗保护两种,过电流保护在变压器电源两侧和时间元件上安装过电路继电保护装置,电流元件运行一段时间之后将会切断电源。阻抗继电保护则使用接入电阻器代替切断电源来保护线路设备,阻抗元件运行一段时间之后将会跳闸断路。
2.3发电机组继电保护
发电机组是电力系统的电能来源,做好发电机组的继电保护工作同样十分重要。
2.3.1重点保护。发电机可能存在失磁故障,可以结合发电机相位、电流以及中性点,对发电机形成纵联差动保护,而发电机单相接地电流超过整定值,可以在发电机组上安装接地保护装置。发电机组定子绕组匝间短路会使发电机故障位置温度升高,破坏绝缘层,威胁发电机运行安全,因此定子绕组内需要安装匝间保护装置。
2.3.2备用保护。发电机定子绕组负荷过低,保护装置将会响应,跳闸切除电源并告警,发电机组外部出现的故障能够及时切除,避免对机组造成影响,而过电压保护主要目的是避免发电机低负荷情况下绝缘击穿。
3结语
从接地保护、变压器保护以及发电机组保护三方面,对继电保护自动化技术在电力系统中的应用进行了研究。继电保护自动化系统能够监控电力系统的运行情况,为电力设备维护工作提供参考依据,同时在出现故障时能够快速响应,切除故障点,避免故障范围进一步扩大,是保证电力系统能够正常运行的重要技术措施。
参考文献
[1]董雪源.基于互联网技术的电力系统广域保护通信系
统研究[D].西南交通大学,2012.
[2]陈吉.电力综合自动化系统与变电站继电保护研究
[D].华北电力大学,2015.
[3]王翰,严进伟.电力系统继电保护与自动化装置的可
靠性分析[J].中国新技术新产品,2013,(3).
[4]陈立.继电保护自动化技术在电力系统中的应用分析
[J].科技传播,2013,(5).
[5]黄磊.浅谈电力系统继电保护自动化技术的发展与应