360作文网

分数乘法教学设计(精选13篇)

栏目:办公写作

篇1

教学内容:

分数与整数相乘(第38~39页上的例1、例2)

教学目标:

1、使学生通过自主探索,理解分数乘整数的意义,知道“求几个几分之几相加的和”可以用乘法计算,初步理解分数乘整数的计算方法。

2、使学生进一步增强运用已有知识经验探索并解决问题的意识,体验探索学习的乐趣。

教学重点:

分数乘整数的意义和计算方法。

教学难点:

在探索中自己发现计算方法。

教学策略:

从分数的意义中导入,从分数加法中理解分数乘整数意义与计算方法。

教学预案:

一、导入

1、出示例1中的长方形直条,标出长是“1米”。

2、提问:做一朵绸花用3/10米绸带,你能从直条图上表示出已知条件吗?你是怎样想的?(体会到3/10米就是1米的3/10)

二、探索

1、现在小芳要做3朵这样的绸花,一共要用多少米绸带?

请学生上台操作:在直条图上涂色表示要用的部分。并说说你是怎么想的?

2、如果用算式来表示3朵绸花所用的米数,该怎样列式?

生报,师板书。(可能有连加法算式,也可能有乘法算式)

3、你会计算结果吗?你是怎样想的?

4、组织交流。

引导学生从加法算式中体会到3/10与3相乘的意义与计算方法。

5、揭示课题:分数与整数相乘

6、如果做5朵这样的绸花呢?该怎样列式?结果是多少?请大家在自备本上独立完成。

7、组织交流:你是怎样列式的?还可以怎样列式?结果是多少?为什么不列加法算式了?

学生说明理由。

在学生计算时,教师可以作指导,分别介绍两种不同的计算方法:

(1)先分子与整数相乘,再约分;

(2)先约分,再相乘。

三、归纳

1、通过刚才两道分数与整数相乘的计算练习,你发现分数与整数相乘可以怎样计算?先独立思考一下,再把计算方法和同桌交流一下。

2、组织交流。

四、巩固

1、练一练第一题:让学生先涂色,然后把算式列在旁边。

2、练习八第一题:看图在书上分别写出加法算式和乘法算式。说明想法。

追问:能不能写1/7�w6?为什么?体会到要根据图意来列式。

3、练一练第二题:学生先独立完成,指名板演,在组织评价,提醒学生要注意书写格式。

4、练习八第3题:读题理解题意,独立解决在书上,再组织交流:你是怎样列式的?为什么怎样列式?引导学生体会到“求几个几分之几是多少”用乘法计算。再追问:结果是多少?你是怎样计算的?引导学生进一步巩固分数乘整数的计算方法。

5、练习八第4、5题:(教学方法同第3题)

6、机动补充:

(1)直接说出得数

2/7�w4=9/5�w5=1/7�w7=

20�w7/20=7/60�w30=1/2�w5=

(2)小光写一个大字用3/4分钟。照这样的速度,写16个大字要用多少分钟?

(3)一辆汽车每分行驶7/6千米,平均每小时可行驶多少千米?

五、课堂作业:练习八第2题。

课前思考:

分数乘整数是分数乘法的第一教时,是学生理解分数乘法意义的起点。是在学生已学过整数乘法的意义和分数加法计算的基础上进行教学的。例1以做绸花为素材,引导学生初步理解求几分之几是多少可以用乘法计算,掌握分数与整数相乘的计算方法。

这节课以计算为主线,在研究算法的过程中中时感悟运算的意义。

课前思考:

首次教学分数乘法,教材除了从实际问题引出,还尽量与整数乘法靠近,教学中要充分利用学生已有的知识、经验,构建新运算的意义与算法。创造迁移的条件,引导学生主动写出分数乘法算式;营造探索的氛围,放手让学生创新分数乘整数的方法。高教导设计的教学预案中可以看出已经体现了这一点,在教学例1的第2小问时让学生独立尝试计算。我想在教学时也可以大胆尝试,但在学生尝试计算后要马上组织学生交流,可以先同桌之间交流,再请个别学生全班交流。交流时主要联系分数乘法的意义来解释计算过程,并通过这一题的计算明确:计算结果不是最简分数的,要约分成最简分数。

教学中要把握:通过例1的学习,比较加法算式和乘法算式,实现原有运算概念的迁移:求几个相同分数相加的和,用乘法算比较简便。分数乘法算式和整数乘法算式一样,不区分被乘数和乘数,求3个3/10是多少,算式3×3/10和3/10×3都可以。通过让学生研究分数乘整数的算法,把“分子相加、分母不变”加工成“分子与整数相乘,分母不变”,从而获得新的计算方法。尤其是在方框里填数:3/10+3/10+3/10=□+□+□/10=□×□/10,要让学生经历“分子相加”转化成“分子与整数相乘”的过程,建构了新的计算方法。

说明:练习八中的第5题暂时还不能练习,因为我们将第二单元的内容要放在第四单元后进行教学,所以本题要改为其他练习。

篇2

分数乘法的教学设计

本单元知识说明:

本单元教学内容是在学生已掌握了整数乘法,分数的意义、性质和分数加、减法的计算等知识的基础上进行教学的。内容包括分数乘法的意义和计算法则,乘加、乘减混合运算,求一个数的几分之几是多少的应用题;倒数的认识。这些知识是分数中的基础知识,利用这些知识不仅可以解决有关的实际问题,而且也是后面学习分数除法、分数四则混合运算和应用题及百分数的基础。

根据本单元的知识结构特点和学生的认知能力,教学分数乘法的意义和计算法则时,通过操作、演示、观察、比较等活动,即先形象具体,后抽象概括,帮助学生理解意义和算理。教学乘加、乘减混合运算时重点是多层次多形式的练习,使学生掌握计算步骤,提高计算熟练程度。分数应用题教学时,主要是根据分数应用题的特点,通过对比的方法以及采用微机动画显示线段,师生共同画图、共同分析,从而弄清具体问题下的单位“1”,防止学生形成一种思维定势,从而突出教学重点。

教学目标:

1、使学生理解分数乘法的意义,掌握分数乘法的计算法则,能够比较熟练地进行计算。

2、使学生掌握分数乘加、乘减混合运算,理解整数乘法运算定律对于分数乘法同样适用,并能应用,这些定律进行一些简便计算。

3、使学生会解答一个书的几分之几是多少的应用题。

4、使学生理解倒数的意义,掌握求倒数的方法。

教学重点:

①使学生理解分数乘法的意义,掌握分数乘法的计算法则。

②掌握分数乘加、乘减混合运算,能应用运算定进行简单计算。

③会解答求一个数的几分之几是多少的应用题。

④理解倒数的意义,掌握求倒数的方法。

教学难点:一个数乘分数的意义和计算法则。

学法指导:在教学过程中,要突出体现以学生为主体,为学生提供创造参与教学活动的情境,通过操作、观察、比较培养学生抽象概括能力,通过分析讨论,培养学生的分析综合能力。同时教学过程中还要注意抓住新旧知识的内在联系,使学生了解知识间的横向联系。要重视学法指导,培养学生的类推能力。

教学时数:12节机动2节

1.分数乘法的意义和计算法则

第一课时:分数乘以整数

教学内容:教科书l-2页,例1及“做一做”,练习一l-7题。

教学目标:

知识目标:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

能力目标:培养学生理解知识的能力和计算能力。

思想目标:培养学生逻辑推理能力,渗透择优思想。

学法引导:

1.通过演示,使学生初步感悟算理。

2.指导学生通过体验,归纳分数乘整数的计算法则。

教学重点:

使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

教学难点:引导学生总结分数乘整数的计算法则。

教具准备:图片、课件

教学过程:

一、创设情境,引入新课。

1、5个12是多少?

用加法算:12+12+12+12+12

用乘法算:12×5

问:12×5算式的意义是什么?被乘数和乘数各表示什么?

2、计算:

问:有什么特点?应该怎样计算?

3、小结:

(1)整数乘法的意义,就是求几个相同加数的和的简便运算。被乘数表示相同的加数,乘数表示相同的加数的个数。

(2)同分母分数加法计算法则是分子相加作分子,分母不变。

二、引导谈话:

教学例1。

出示例1:小新爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?

用加法算:(块)

用乘法算:(块)

问:这里为什么用乘法?乘数表示什么意思?

得出:分数乘以整数的意义与整数乘法的意义相同,

都是求几个相同的和的简便运算。学生齐读一遍。

练习:说一说下面式子各表示什么意思?(做一做第3题。)

问:那么分数乘以整数方法应该是怎样算?(通过观察例1,得出分数乘以整数的计算法则)

三、巩固练习。

1.第2页做一做。

2.练习一

3、分数乘以分数的计算方法是什么?

教学后记:初步学习分数乘整数的意义和计算方法,学生掌握的非常好,就是在约分的时候不够熟练。需要加强练习。

第二课时:一个数乘以分数

教学内容:教科书第4~6页,练习二第1~4题。

教学目的:

1、使学生理解一个数乘以分数的意义,学会分数乘以分数的计算方法。

2、通过操作、观察培养学生的推理能力,发展学生的思维。

教学重点

学会分数乘分数的计算方法

教具准备:

第4页例2的插图。长方形纸。

教学过程:

一、启发谈话。

1.计算下列各题并说出计算方法。

2.上面各题都是分数乘以整数,说一说分数乘以整数的意义。

二、引导探究,自主学习。

引入:这节课我们来学习一人数乘以分数的意义和计算方法。(板书课题:一个数乘以分数)

1.理解一个数乘以分数的意义。

(1)第一幅图:一瓶桔汁重千克,3瓶重多少千克?怎样列式?

指名列式,板书:

问:表示什么意思?指名回答,板书:求3个或求的3倍。

(2)出示第二幅图:一瓶桔汁重千克,半瓶重多少千克?怎样列式?怎样表示半瓶?

指名回答:半瓶用表示;式子为:。

说明:是求的一半是多少,也就是求的是多少。板书:求的。

(3)出示第三幅图:一瓶桔汁重千克,瓶重多少千克?怎样列式?

指名回答,板书:,问:表示什么意思?指名回答,板书:求的。

2.引导学生小结。

①.指出三个算式都是分数乘法,比较三个算式的不同点:谈论:

第一个算式与第二、三个算式中乘数有什么不同?

想一想:第一个算式与第二、三个算式中乘法的意义有没有不同。有什么不同?

引导学生得出:分数乘以整数的意义和整数乘法的意义相同;而一个数乘以分数的意义是求这个数的几分之几是多少。

学生齐读课本的.结语。

练习:

.课本的做一做1、2题。

.说一说下列算式的意义。

3.理解分数乘以分数的计算方法。

(1)出示例3(先出示第一个问题)。

问:你根据什么列出式子?

得出:根据“工作效率×工作时间=工作总量”列出式子:。

问:如果我们用一个长方形表示1公顷,那么公顷怎样表示?

学生回答后,教师出示例3的图(1)

问:公顷的是什么意思?

出示例3图(2)

要求学生观察图(2),问:在图中的对于1公顷来说,是1公顷的几分之几?

引导得出:

观察这个式子有什么特点?

出示例3的第二个问题。

学生列式,教师再出示例3图(3)

问:已经求公顷的是公顷,那么公顷的应有这样的几份?就是多少公顷?

板书:公顷)

(2)引导学生小结分数乘以分数的计算方法。

观察分数乘以分数的计算过程,谁能说一说计算方法?

教师归纳,再看书上结语。

再说明,为了计算的简便,也可以先约分,再乘。

例:

(3)做一做。

三、巩固练习:练习二第1、2题。

四、小结。

1.这节课我们学习了什么内容?

2.一个数乘以分数的意义是什么?

3.分数乘以分数的计算方法是什么?

五、作业。

练习二第3、4题。

教学后记:在推理一个数乘以分数的计算方法的时候,存在困难,学生看不懂图意,不能正确的根据图意写出算式,在推理一个数乘以分数的意义的时候,也存在困难。有一点抽象。学生在计算的时候,不能做到先约分再相乘。

第三课时

第四课时:分数乘加、乘减混合运算

教学内容:课本第9页例4,练习四1~5题。

教学目的:使学生掌握分数加、减、乘混合在一起的算法。提高计算的熟练程度。

教学过程:

一、启发谈话。

1.分数乘以整数的意义?

2.一个数乘以分数的意义?

3.分数乘法的计算法则、带分数乘法的计算方法。

4.口算。

5.计算。

5×6+7×315×(34-29)

二、引导探索,自主学习。

问:最后两题的运算顺序怎样。

(第一题先算乘法,再算加法;第二题先算括号,再算乘法)

说明:如果我们将那两道题的整数改为分数,它们的运算顺序也是不变的。按照同样的方法算一算下面的题目。

出示例6。

问:这两道题的运算顺序是怎样的?(学生回答后独立完成。让两名学生到黑板上做。)

板书:

三、巩固练习。

1.课本12页做一做。

2.练习三1、3、4题。

四、课堂小结:

这一节课里你有什么收获?学会了哪些知识?

五、作业:

练习三2、5题

教学后记:通过这节课的学习,发现学生对加减混合在一起的时候,总是分不清楚什么情况该约分,学习了分数乘法以后,学生遇到加法也去约分,更有一部分学生遇到异分母不会通分,所以对一些学生还要补课。

篇3

分数乘法教学设计

教学目标

1.通过操作活动使学生理解分数乘分数的算理,从而掌握计算方法。

2.发展学生的观察推理能力。

教学准备

1.多媒体课件。

2.每个学生准备一张长15cm、宽10cm的长方形纸。

重、难点

分数乘分数的计算方法。

教学过程

一、创设情境引入新课

(教师谈话,以学校粉刷教室或家庭装修新房等学生身边的实例引入)出示粉刷墙壁的画面,给出条件:每小时粉刷这面墙的1/5。师:能提出什么问题?

学生提问题,教师板书。

以分数乘整数的问题作研究内容,如“2小时可以粉刷这面墙的几分之几?”

师:怎样列式?(板书1/5×2)

师:列式的依据是什么?为什么用乘法?(工作效率×工作时间=工作总量)

让学生计算,并说说怎样计算。

师:我们解决了2小时粉刷多少的问题,那么1/4小时可以粉刷这面墙的几分之几?(出示问题)怎样列式?依据是什么?

学生讨论汇报。(根据“2小时可以粉刷这面墙的几分之几”的列式类推出,或根据工作效率×工作时间=工作总量,可以列出1/5×1/4)。板书算式。

师:(结合板书讲解)我们已经知道求2小时粉刷这面墙的几分之几,就是求2个1/5是多少。求1/4小时粉刷这面墙的几分之几,就是求1/5的1/4是多少。那么1/5×1/4如何计算呢?这就是我们今天学习的内容。板书课题:分数乘分数

二、操作探究计算算理

师:下面我们来探讨分数乘分数怎样计算。我们每人准备了一张纸,把它看作这面墙,先在纸上涂出1小时粉刷的面积,应该涂出这张纸的几分之几?

学生操作。

学生交流是怎样涂的?(用折或量、分的方法把纸平均分成5份,涂出其中的1份,如下图)

师:我们已经知道,求1/4小时粉刷这面墙的几分之几,就是求1/5的1/4是多少。再涂出1/5的1/4,小组讨论一下,应该怎样涂?

小组汇报(把涂出的1/5部分再平均分成4份,涂出其中的1份)。学生自己涂色。

师:从涂色的结果看,1/5的1/4占这张纸的几分之几?1/20

师:我们可以得到1/5×1/4=1/20。根据涂色的过程,你能说说是怎样得到的吗?

学生讨论交流汇报。

教师归纳(用多媒体演示涂色过程):我们先把这张纸平均分成5份,1份是这张纸的1/5,又把这1/5平均分成4份,也就是把这张纸平均分成了5×4=20份,1份是这张纸的1/20。由此可以得到(板书)。

三、迁移延伸,归纳法则

提出问题:3/4小时粉刷这面墙的几分之几?

师:“3/4小时粉刷这面墙的几分之几?”是求什么?(1/5的3/4是多少?)

小组讨论并操作:怎样列式?涂色表示1/5的3/4。怎样计算?

交流计算方法和思路:与前面一样,也是把这张纸分成5×4份,不同的是取其中的3份,可以得到(板书)

根据板书的两个计算算式讨论归纳计算方法。

通过学生讨论交流得到:分数乘分数,用分子乘分子,分母乘分母。

四、反馈提高,巩固计算

3/4x2/94/7x7/85/6x3/257/12x9/14

让学生独立计算。通过请学生在黑板演算过程及结果交流计算情况,强调能约分的要先约分再乘,这样可以使计算简便。并结合学生的演算情况说明约分的书写格式。

课堂总结:今天我们学习了什么?分数乘分数怎样计算?

学生独立完成“做一做”。

课后反思

通过今天的课我对数形结合的思想有了进一步的理解。由于分数乘法的意义和计算法则的道理比较抽象,学生理解起来不是很容易,所以利用图形使抽象的问题直观化,在本单元的教学中数形结合的思想就显得尤为重要了,

1.人教版数学六上《分数乘法》教学设计

2.乘法分配律教学设计

3.《7的乘法口诀》教学设计

4.小数乘法主题教学设计

5.7的乘法口诀教学设计

6.《6的乘法口诀》教学设计

7.《9的乘法口诀》教学设计

8.9的乘法口诀教学设计

9.6的乘法口诀优秀教学设计

10.分数认识教学设计

篇4

《分数的乘法》教学设计模板

单元目标:

1、使学生理解分数乘法的意义,掌握分数乘法的计算法则,并能熟练地进行计算。

2、使学生掌握分数乘加、乘减混合运算,理解整数乘法运算定律对于分数乘法同样适用。

3、使学生理解分数乘法应用题中的数量关系,会解答求一个数的几分之几是多少的应用题。

4、使学生理解倒数的意义,掌握求倒数的方法。

单元重点:

分数乘法的意义和计算法则。

单元难点:

1、理解分数乘法的意义,根据分数乘法的意义去解答这类应用题。

2、分数乘法计算法则的推导。

1、分数乘法

(1)分数乘整数

教学目标:

1、在学生已有的分数加法及分数基本意义的`基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。

2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。

3、引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。

教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

教学难点:引导学生总结分数乘整数的计算法则。

教学过程:

一、复习

1.出示复习题。

(1)列式并说出算式中的被乘数、乘数各表示什么?

5个12是多少?9个11是多少?8个6是多少?

(2)计算:

++=++=

2.引出课题。

++这题我们还可以怎么计算?今天我们就来学习分数乘法。

分数乘法教学设计

分数乘法二教学设计

分数乘法三教学设计

分数乘法三教学设计

分数乘法多媒体教学设计评语

篇5

教学目标

1.结合具体情境,进一步探索和理解分数乘整数的意义,并能够熟练准确的计算。

2.能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。

3.使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。

教学重点;:理解整数乘以分数的意义,并能证确计算。

教学难点:运用所学的知识解决分数乘法的实际问题

教学过程

一、复习导入:

1.2/3×2表示的意思是()

2.计算分数乘整数时,用分数的`()和整数相乘的积作(),分母().

3.请学生计算下列分数乘法运算题。

1/8×3.3/10×4.7/24×12

二、情境创设

教师出示课件课本情境图:小红有6个苹果,淘气的苹果是小红的1/2;笑笑的苹果是小红的1/3,淘气和笑笑各有几个苹果?

1.教师让学生思考这个题,并对学生进行提问。

2.引导学生分析,无论是淘气还是笑笑的苹果数,都是以谁为标准的?两者都以小红的苹果数6为标准,我们把“小红的苹果数6”看做一个整体。淘气的苹果是6个的1/2,即把6个苹果平均分成2份,其中的份就是淘气的苹果数。教师出示课件图。还有其它分的方法么?学生交流。教师板书6×1/2

3.教师提问学生说一说自己是怎样计算的?

4.学生自己动手填完课本例题上的方格。

5.怎样表示笑笑的苹果数?

6.教师板书(笑笑:6×1/3=2)

7.总结分数乘法的意义就是求一个数的几分之几是多少。

8怎么计算呢?6×1/2=6×1/2=36×1/3=6×1/3=2教师和学生对比这两个题目的区别和联系。学生初步理解整数乘以分数的计算方法。

三、巩固练习:

1.计算8×3/104×3/1024×3/8

2.做课本5页试一试1题,36的1/4和1/6分别是多少?

注意让学生体验求一个整数的几分之几是多少的数学意义。

3.试一试2,学生说说:“打折”的意思?八折、九折分别表示什么意思?学生计算

四、课堂小结:同学们,这一节课你学到了哪些知识?(提问学生回答)

篇6

课题:分数乘法第1课时

教学目标:

1.让学生经历探索分数乘整数计算方法的过程,并能正确地进行计算。

2.感受分数乘法与分数加法的内在联系,培养学生的迁移类推能力。

3.增强学生运用已有知识经验探索并解决问题的意识,体验探索学习数学的乐趣。

教学重点:掌握分数乘整数的计算方法。

教学难点:能正确熟练地计算分数乘整数。

教学准备:课件

教学过程:

一、谈话导入

1.观察情境图,激发学习兴趣。(多媒体出示生日会分蛋糕情境图)

同学们,你们喜欢过生日吗?为什么?生日时一般都要吃蛋糕,如果每个人吃__个蛋糕,你知道这表示的意思吗?

(表示把一个蛋糕平均分成7份,每人吃其中的2份。)

2.导入新课。

同学们对分数已经有了一些了解,并且学会了分数的加法和减法运算,这学期我们还要学习分数的乘法和除法运算。今天我们就先来学习分数乘法的相关知识。

(板书课题:分数乘法)

二、探索新知

1.投影出示例题1。____个,3人一共吃多少个?

(1)引导学生读题,并说说____表示什么。____表示把一个蛋糕平均分成9份,每人吃其中的2份。

(2)求“3人一共吃多少个?”实际上就是求什么?先让学生思考,再指名回答。(实际上就是求3个是多少。)

2.学生独立列加法算式解答。____++==(个)

3.根据乘法的意义将加法算式转换成乘法算式。

(1)提问:这道加法算式有什么特点?(三个加数都相同。)

(2)追问:求几个相同加数的和还可以用什么方法来计算呢?

(启发学生得出:3个相加,用乘法表示是×3或3×。)

4.探究分数乘整数的计算方法。

(1)提问:3个相加的和,也可以列成算式×3,那么×3样计算呢?

(2)学生思考计算方法。

学生思考,教师巡视观察。如果学生有困难,可以进行必要的启发:是个,2个乘3就是6个,所以就是。

(3)组织全班交流,教师结合学生的回报情况进行板书:×3=++====(个)教师强调:在计算过程中,虚线框起来的思考过程可以不写;分数线要用直尺画。

4)学习计算过程中进行约分。

引导学生观察计算过程中的分子和分母,分子用“2×3”得来,说明分子中含有因数3,而分母是“9”,也含有因数3,所以将“3”和“9”进行约分,即:____×3==____(个)

观察上面的计算过程,你发现了什么?

(预设:能约分的可以先约分,再计算,结果相同。)

(5)提问:如果把算式“×3”的两个因数交换位置,变成“3×__”

应该怎样计算呢?学生尝试计算后组织交流。

(6)总结分数乘整数的计算方法。

提问:分数与整数相乘,可以怎样计算?

指名回答,多让学生参与交流。

(分数乘整数,用分子乘整数的(分数乘整数,用分子乘整数的积作分子,分母不变。能约分的可以先约分,再计算。)

5.练一练。

教材第2页“做一做”第1题。学生独立完成,投影交流。

教师强调:分数与整数相乘时,一定是整数与分母约分。

三、反馈完善

1.教材第2页“做一做”第2题。

这道题是分数与整数相乘的计算,第三小题是整数乘分数,通过这道计算题,巩固分数乘整数的计算方法。教师也可以借此来发现学生在计算过程中存在的问题。

2.教材第6页“练习一”第1题。

这道题是分数乘整数的意义的练习。通过练习进一步感受分数乘整数与分数加法之间的联系,从而体会到分数乘整数的意义和整数乘法的意义相同。

3.教材第6页“练习一”第2题。

这道题是分数乘整数知识在日常生活中的应用,5kg的衣物就需要5个洗衣粉。

四、反思总结通过本课的学习,你有什么收获和体会?还有哪些疑问?

课题:分数乘法第2课时

教学目标:

1.通过直观操作,初步掌握分数乘分数的计算方法。

2.经历探索分数乘分数计算方法的过程,体验数学学习,感受成功的喜悦,激发学习数学的兴趣。

教学重点:理解一个数乘分数的意义,掌握分数乘分数的计算方法。

教学难点:理解分数乘分数计算的算理。

教学准备:课件

教学过程:

一、谈话导入

1.计算。×4=9××4=14×=学生独立完成,指名板演。全班交流时,指名说说14×

2.导入。今天我们继续研究分数乘法的问题。(板书课题)

二、探索新知

(一)一个数乘分数的意义。1.投影出示例题2。

(1)问题一:3桶水共多少升?指名列出算式:12×3。提问:你是怎么想的?想:求3个12L,就是求12L的()倍是多少。

篇7

教学目标:

1、结合具体情境,探究并理解分数乘整数的意义;

2、探究并掌握分数乘整数的计算方法,并能正确计算;

3、能正确运用“先约分再计算”的方法进行计算。

4、能运用所学知识解决生活中简单的实际问题。

教学重点

1、结合具体情境,探索并理解分数乘整数的意义;

2、探索并掌握分数乘整数的计算方法,并能正确计算;

教学难点:

能正确运用“先约分再计算”的方法进行计算。

教学准备:

多媒体课件PPT,卡片,记号笔等

教学过程:

环节一:创设情景,初步探索

1、谈话引入:一张纸,可以剪出很多同样的图案来,老师在剪纸的过程中发现这里居然也蕴含了数学知识,今天特意带来了,我们一起来研究研究它,有没有兴趣?

2、出示情境图

(1)一张彩纸,什么意思?(课件演示)

(2)出示问题:1个占整张彩纸的1/5,3个占整张彩纸的几分之几?能解决这个问题吗?先独立思考,完成学习单一的第一题,看谁的.解决方法多?

3、学生自行思考完成,巡视要求写出具体的过程,让不同做法的同学板演。

4、学生汇报:(学生可能出现的情况)

预设第一种方法:用加法算的:就是1/5+1/5+1/5=1+1+1/5=3/5,3个1/5相加,因为同分母分数相加,分母不变,分子相加。

预设第二种方法:用乘法算的:1/5×3=1×3/5=3/5。求3个1/5,可以用1/5×3来计算,它表示3个1/5相加,根据同分母分数相加的方法,分母不变,分子相加,分子3个1相加可以写成1×3,得出3/5。

5、还可以怎样列式?

师:不仅能用旧知识解决问题,还探索出新方法。由此可见,求几个相同的分数的和,可以用乘法计算。这与整数乘法的意义是相同的。(把加法的板书和乘法的板书有机的结合起来。)

环节二:合作学习,探究新知

1、我们来探究:(小组活动)

师:你们的独立思考能力杠杠的,我还想见识见识你们小组合作学习的能力。所以,我们来探究:2个3/7的和是多少?涂一涂,填一填,算一算,说一说。

出示小组活动要求,明确要求:涂一涂,填一填,算一算,议一议,写一写,贴一贴。

2、小组代表汇报。

3、你认为这计算过程中,哪些部分可以省略?

4、轻松练笔

师:我们参与,我们交流,我们发现。用我们的发现练练笔吧。

1、独立计算,在小黑板上展示,每人一题,组长检查指导。说明:全对的每组奖励2颗星。

2、小组长交叉评分

3、总结:谁来说说分数与整数相乘的计算方法?谁还想说?学生用自己的语言表达。(出示板书:分数与整数相乘,分母不变,分子和整数相乘)

环节三:课堂检测,巩固内化

1、完成课堂检测题

学到知识了吗?老师要考考你们,敢不敢接受挑战?请在4分钟内完成课堂检测题。

2、集体评讲。

环节四:总结反思,升华新知。

本节课有什么收获?还有什么不明白的地方吗?点评各组的表现。

环节五、作业。

课本23页练一练第3题,24页第7题。

六、板书。

篇8

教学目标

1、结合具体情境,进一步探索和理解分数乘整数的意义,并能够熟练准确的计算。

2、能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。

3、使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。

教学重点:

理解整数乘以分数的意义,并能证确计算。

教学难点:

运用所学的知识解决分数乘法的实际问题

教学过程

一、复习导入:

1、2/3×2表示的意思是()。

2、计算分数乘整数时,用分数的()和整数相乘的积作(),分母()。

3、请学生计算下列分数乘法运算题。

1/8×3

3/10×4

7/24×12

二、情境创设

教师出示课件课本情境图:小红有6个苹果,淘气的苹果是小红的1/2;笑笑的苹果是小红的1/3,淘气和笑笑各有几个苹果?

1、教师让学生思考这个题,并对学生进行提问。

2、引导学生分析,无论是淘气还是笑笑的苹果数,都是以谁为标准的?两者都以小红的苹果数6为标准,我们把“小红的苹果数6”看做一个整体。淘气的苹果是6个的1/2,即把6个苹果平均分成2份,其中的份就是淘气的苹果数。教师出示课件图。还有其它分的方法么?学生交流。教师板书6×1/2

3、教师提问学生说一说自己是怎样计算的?

4、学生自己动手填完课本例题上的方格。

5、怎样表示笑笑的苹果数?

6、教师板书(笑笑:6×1/3=2)

7、总结分数乘法的意义就是求一个数的几分之几是多少。

8怎么计算呢?6×1/2=6×1/2=36×1/3=6×1/3=2教师和学生对比这两个题目的区别和联系。学生初步理解整数乘以分数的计算方法。

三、巩固练习:

1、计算8×3/10

4×3/10

24×3/8

2、做课本5页试一试1题,36的1/4和1/6分别是多少?

注意让学生体验求一个整数的几分之几是多少的数学意义。

3、试一试2,学生说说:“打折”的意思?八折、九折分别表示什么意思?学生计算

四、课堂小结:同学们,这一节课你学到了哪些知识?(提问学生回答)

【板书设计】

分数乘法(二)

整数乘以分数的意义:就是求整数的几分之几是多少?

整数乘以分数的计算方法:用整数与分子相乘的积作分子,分母不变。能约分的要先约分。

教学反思:

本节课有以下优点:

1、针对教材提供的情境,引导学生理解整数乘以分数的意义通过课堂活动使学生认识到分数乘法就在我们的生活中,学生对分数乘法的意义有了更深的理解。

2、抓住了图形语言的直观性,借助图形理解整数乘以分数的意义,是自己的小课题研究落到了实处。

篇9

教学目标:

1、通过练习巩固稍复杂的分数乘法实际问题的基本方法,明确解题思路。

2、通过变式题、开放题的训练,锻炼学生的思维,提高分析问题的能力。

3、在解决问题中,引导学生认真思考,培养合作精神和克服困难的勇气,激发热爱数学的情感。

教学重点:

一步计算的分数乘法问题和两步计算的分数乘加、乘减问题,用分数表示的数量关系的理解以及解答的方法。

教学难点:

理解分数表示的“分率”和“具体量”的区别。

教学过程:

一、创设情境,切入课题

朗读诗歌。出示《春》的诗句:

春水春池满,春时春草生。春花绽春蕊,春雨伴春风。春鸟弄春色,春人忙春耕。

这首诗的最大特点是什么?你能用我们学过的数学语言来描述吗?能编一些分数乘法解决的问题吗?

例如:“春”的字数占总字数的几分之几?

《春》这首诗共有30个字,光“春”字就占了全诗的五分之二,其他字有多少个?“春”字只比其他字少几个?

学生解答后交流解题思路

小结:通过前面的学习,同学们已经初步掌握了分数解决问题的关键,要找准单位“1”,要理解分数的含义;这节课我们重点来进行有关分数解决问题训练。

二、基本练习,掌握方法

题目要求:根据下列关键句,你都能想到什么(训练学生从以下四方面说)

(1)梨子的数量是桔子的五分之二;

五分之二表示()与()的数量关系;

()表示“1”;()表示五分之二;

根据数量关系列示()×()=()。

(2)一袋米,还剩七分之三;(先补充完整“还剩谁的七分之三”)

(3)火车速度比汽车快三分之一

(4)实际烧煤比计划节约八分之三

小结:我们在遇到含有分率的分数问题是要先确定单位“1”和分析数量关系;这是解决此类问题的关键。

三、分类练习

(一)根据列式补充问题

根据列式的含义,在每个算式的后面补充合适的问题。

小华看一本168页的故事书,已经看了七分之四,?

(二)补充条件进行题组的对比练习:

选择对应的列示填在括号里,并说出为什么。

某工厂四月份计划用煤135吨,(),实际用煤多少吨?

四、课堂检测:

1、小强想买一台5600元的电脑,他现在只有这台电脑单价的五分之三的钱,小强要买这台电脑还差多少钱?

2、甲、乙两地相距240千米,一辆汽车从甲地到乙地,已经行驶了120千米,再行驶多少千米距离乙地还有全程的六分之一?

3、一桶油重200千克,第一次用去它的八分之五,第二次用去剩下的五分之二,第二次用去多少千克?

篇10

教学内容:人教版小学数学教材六年级上册第13~14页例8及相关练习。

教学目标:

1、使学生理解和掌握连续求一个数的几分之几是多少的问题的数量关系,掌握分数连乘法的计算方法,并能正确计算。

2、让学生在“用数学”活动中,学会收集、选择和加工信息,在共同探讨中培养学生的合作意识以及分析问题、解决问题的能力。

教学重点:理解掌握连续求一个数的几分之几是多少的问题的数量关系,掌握解题的基本方法。

教学难点:在用分数连乘的方法解决实际问题的过程中,理解单位“1”“分率”与所对应的量的相对性。进而帮助学生深刻理解单位“1”“分率”与具体数量之间的一一对应关系。

教学准备:课件、学具。

教学过程:

一、复习引入,唤醒旧知

1、找一找,谁是表示单位“1”的量:

(1)足球的个数是篮球的;

(2)女生人数与男生人数的相等。

2、你能解决这两个问题吗?

(1)篮球有35个,足球的个数是篮球的,足球有多少个?

(2)六(1)班有男生25人,女生人数与男生人数的相等,六(1)班有女生多少人?

3、揭题:这节课我们就继续利用单位“1”的量,来解决更多的问题。

【设计意图】复习环节中两个练习题的设计,有层次、有梯度地复习了有关单位“1”的知识内容,目的是让学生熟悉单位“1”、分率与具体量之间的一一对应关系,为学习新知做好铺垫。

二、自主探究,思辨交流

(一)阅读与理解

出示例8情境图:这个大棚共480m2,其中一半种各种萝卜,红萝卜地的面积占整块萝卜地的。红萝卜地有多少平方米?

你获取了哪些数学信息呢?

整个大棚的面积是(XX)。

萝卜地的面积占整个大棚面积的(XX)。意思是说以(XX)为单位“1”,(XX)是(XX)的(XX)。

红萝卜地的面积占萝卜地面积的(XX)。意思是说以(XX)为单位“1”,(XX)是(XX)的(XX)。

要求的是(XX)的面积。

【设计意图】审题是解决问题的第一步,引导学生了解题目中有哪些数学信息,有助于提高学生收集、处理、分析有效的数学信息的能力,继而提高学生提出问题、分析问题的能力。真正将课标提出的“四基能力”落实在课堂之中。

(二)分析与解答

1、分析:如果我们用一张长方形的纸来表示整个大棚,你能折出或画出红萝卜地的面积吗?

学生动手操作。

2、解答:看着这张图,你能解决这个问题吗?(学生尝试解决。)

3、交流:谁来说说你是怎么解决的?

(1)先求萝卜地的面积,算式是480×=240(m2);

再求红萝卜地的面积,算式是240×=60(m2)。

思辨:求萝卜地的面积时,谁是表示单位“1”的量?(整个大棚面积)

求红萝卜地的面积时,谁是表示单位“1”的量?(萝卜地面积)

利用上述图例,引导学生整理、思考上述思辨问题,并得出:连续两步求一个数的几分之几是多少,这两步中表示单位“1”的量是不同的。

(2)先求红萝卜地占大棚面积的几分之几。(老师问:你能在图上指出红萝卜地占大棚面积的几分之几吗?)算式是×=。

再求红萝卜地的面积,算式是480×=60(m2)。

思辨:这两种方法有什么相同点和不同点,你能发现什么?

学生充分发表意见。

师小结:今后解题时一定要认真分析题意,想好先算什么,再算什么,既可以用分步算式计算,也可以列综合算式计算,这就是我们这节课要学习的连续求一个数的几分之几是多少的问题。

【设计意图】在本环节的教学中,主要采取自主探究的形式,让学生根据信息进行积极思考、尝试解决、思辨交流,调动全体学生参与学习活动的积极性。

(三)回顾与反思

我们求出的红萝卜地的面积是60m2,这个答案是否正确呢?你能用自己喜欢的方法检验一下吗?

生:红萝卜地的面积是60m2,60÷240=,确实是占萝卜地面积的。

萝卜地的面积是240m2,240÷480=,正好是整个大棚面积的一半。

生:从折纸中,我们可以很清晰地看出,红萝卜地、萝卜地和整个大棚的面积之间的数量关系符合题意。

【设计意图】让学生对自己的探索过程进行回顾与反思,是对自己的学习活动进行的有效自我调节,是智慧成熟的.标志。可以培养学生反思的意识,使学生养成反思的习惯,提高学生反思的能力,进而使学生调整学习过程,改善学习策略,促进自主学习能力的提高。

三、巩固练习,强化认知

1、教材第14页做一做:咱们班36人,的同学长大后想成为老师,想成为科学家的人数是想当老师人数的,多少名同学想成为科学家?

你能用几种方法计算呢?

说说你的分析思路,第一步是先求什么?

2、解答教材第16页练习三的第1~3题。

(1)人体血液在动脉中的流动速度是50厘米/秒,在静脉中的流动速度是动脉中的,在毛细血管中的流动速度只有静脉中的。血液在毛细血管中每秒流动多少厘米?

第一种方法先求什么?再求什么?

先求血液在静脉中的流动速度,再求血液在毛细血管中的流动速度。

算式是50××=(厘米)。

第二种方法先求什么?再求什么?

先求血液在毛细血管中的流动速度是在动脉中的流动速度的几分之几,再求在毛细血管中的流动速度。

算式是50×=(厘米)。

(2)海象的寿命大约是40年,海狮的寿命是海象的,海豹的寿命是海狮的。海豹的寿命大约是多少年?

第一种方法先求什么?再求什么?

先求海狮的寿命,再求海豹的寿命大约是多少年。

算式是40××=20(年)。

第二种方法先求什么?再求什么?

先求海豹的寿命是海象的几分之几,再求海豹的寿命大约是多少年。

算式是40×=20(年)。

(3)芍药的花期是32天,玫瑰的花期是芍药的,水仙的花期是玫瑰的。水仙的花期是多少天?

第一种方法先求什么?再求什么?

先求玫瑰的花期,再求水仙的花期是多少天。

算式是32××=15(天)。

第二种方法先求什么?再求什么?

先求水仙的花期是芍药的花期的几分之几,再求水仙的花期是多少天。

算式是32×=15(天)。

【设计意图】提高学生运用所学知识解决实际问题的能力,从而加深对连续求一个数的几分之几是多少的问题的认识。练习的设计以趣味性和层次性为原则,分别安排了“基础性练习”“拓展性练习”等练习形式,检验学习效果,培养学生运用所学知识解决实际问题的能力,把教学目标真正落实到位。

四、全课总结,提升认识

(一)师生共同小结:本节课我们学习了哪些内容?

(二)师小结:

1、连续求一个数的几分之几是多少,相当于把两个“求一个数是多少”的问题整合在一起。要先想清楚第一步求什么,特别要注意第一步计算和第二步计算中表示单位“1”的量是不同的。

2、我们可以借助折纸或画图的方法理解数量关系。

【设计意图】通过小结,让学生自主回顾本课所学知识并进行简单的梳理,同时通过教师的归纳与提炼,让学生理解连续求一个数的几分之几是多少的问题,渗透“数形结合”的数学思想。

五、布置作业,课外延伸

在实际生活中,我们遇到过需要“连续求一个数的几分之几是多少”的问题吗?请你课后去收集一下吧。

【设计意图】用数学的眼光看生活,用学过的数学知识去解决实际生活中的问题,可以体现知识的价值,提升学生学习数学的积极性,获得学习数学的成功感。

篇11

教学目标

使学生理解分数乘整数的意义,掌握分数乘整数的计算法则.

教学重点

使学生理解分数乘整数的意义,掌握分数乘整数的计算法则.

教学难点

引导学生总结分数乘整数的计算法则.

教学过程

一、设疑激趣

(一)下面各题怎样列式?你是怎样想的?

5个12是多少?10个23是多少?25个70是多少?

(概括:整数乘法表示求几个相同加数的'和的简便运算)

(二)计算下面各题,说说怎样算?

1/6+2/6+3/6=3/10+3/10+3/10=

说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试.

同学之间交流想法:3/10+3/10+3/10=(3+3+3)/10=3×3/103/10×3=

3/10×3这个算式表示什么?为什么可以这样计算?

教师板书:3/10+3/10+3/10=3/10×3=9/10

二、自主探索

(一)出示例1小新、爸爸、妈妈一起吃一块蛋糕,每人吃2/9块,3人一共吃多少块?

1.读题,说说2/9块是什么意思?

2.根据已有的知识经验,自己列式计算

三、交流、质疑

(一)学生汇报,并说一说你是怎样想的?

方法1:2/9+2/9+2/9=2/9×3=6/9=2/3(块)

方法2:2/9×3=2/9+2/9+2/9=(2+2+2)/9=6/9=2/3(块)

(二)比较这两种方法,有什么联系和区别?

联系:两种方法的结果是一样的.

区别:一种方法是加法,另一种方法是乘法.

教师板书:2/9+2/9+2/9=2/9×3

(三)为什么可以用乘法计算?

加法表示3个2/9相加,因为加数相同,写成乘法更简便.

(四)2/9×3表示什么?怎样计算?

表示3个2/9的和是多少?

篇12

教学内容:人教版小学数学教材六年级上册第8~9页例6、例7及相关练习。

教学目标:

1.使学生通过观察、猜测、推理、验证等数学活动理解整数乘法运算定律对于分数乘法同样适用,并能应用运算定律进行一些简便计算。

2.在计算过程中,培养学生细心观察、根据具体情况灵活应用所学知识解决问题的能力。

3.培养学生探索数学问题的兴趣,使其在自主探究、合作交流中体验成功的喜悦。

教学重点:培养学生应用运算定律进行一些简便计算的能力。

教学难点:培养学生细心观察、根据具体情况灵活应用所学知识的能力。

教学准备:课件

教学过程:

一、复习导入

(一)激疑引入

1.教师在黑板上出示两个算式:21×33×21。

同学们,这两个算式相等吗?(学生显然能得出相等,教师用等号连接)21×3=3×21。

2.看到这个等式,你想起了什么知识?(乘法交换律)

3.用字母可以表示为:。这里的字母你觉得可以表示哪些数呢?

4.和可以表示分数,这只是你们的猜测。下面请你独立思考,举例验证这个猜测。

5.交流反馈:整数乘法交换律在分数乘法中同样适用,此时你还想到了哪些定律呢?

(二)点明课题

师:今天我们就来学习和研究整数乘法运算定律推广到分数。

【设计意图】从学生原有的知识经验入手,利用知识的正迁移和同化与顺应的心理基础,使学生通过猜测、举例验证得出“整数乘法交换律在分数乘法中同样适用”,使其获得成功的喜悦。这样既培养了学生观察、猜测、验证的数学思维能力,又培养了学生口头表达的能力,使其能既有条理又较为清晰地表述自己的思考过程。同理,利用这样的数学思想,得出其他两个运算定律的应用。

二、探究新知

(一)合作学习,展开验证

1.刚才同学们还想到了乘法结合律和乘法分配律,那么这里的字母也可以表示分数吗?下面请同桌合作,举例验证。

2.同桌合作,举例验证。

合作要求:

(1)举例说明

①请同桌各写出一个算式并计算出结果,如或;

②同桌交换,计算出利用运算定律后的结果,如或。

③对照两者的结果是否相等。

(2)能否举出一个不相等的例子?

(3)得出结论。

3.全班交流反馈,请几个小组来交流验证过程。

4.小结:整数乘法交换律、结合律和分配律对于分数乘法同样适用。

【设计意图】学生通过独立思考、同桌合作、全班交流反馈的形式,经历猜测、举例验证、尝试举反例、得出结论这样的数学活动过程,激发了学生探究数学知识的兴趣,渗透了科学的探究方法。这一过程,学生始终是知识建构的主人,充分体现了学生的主体地位。

(二)实践新知,应用提高

1.我们花了那么多时间和精力为了得出这一个结论,应该怎样应用呢?

2.独立尝试。

(1)出示:

(2)思考:选择什么运算定律才能使计算简便?

(3)计算

3.小组交流。

四人小组合作交流,讨论:

(1)计算中运用了什么运算定律?

(2)这样计算,为什么能使计算简便?

4.全班反馈

第一题:

=×5×(应用了乘法交换律,可约分)

=3×

=

第二题:

=×12+×12(应用了乘法分配律,可约分)

=10+3

=13

5.小结:应用乘法运算定律,能使一些分数混合运算变得简便。

【设计意图】学生通过独立思考、小组交流、全班反馈,得到“应用乘法运算定律,能使一些分数混合运算变得简便”的结论,使学生体验到获得成功的喜悦,更能够激发其学习的兴趣。

三、练习巩固

1.请独立完成教材第9页的“做一做”。

(1)××387×

选择合适的运算定律,使计算简便。第3小题,思考87与的分母之间有什么联系,怎样做可以进行约分呢?

(2)奶牛场每头奶牛平均日产牛奶t,42头奶牛100天可产奶多少吨?

每头奶牛每天产奶t,那么42头奶牛每天产奶t。求这些奶牛100天产奶的数量,可以列出的算式为:。

2.出示:

(1)请同学们仔细观察这两题,动笔前先思考怎样算比较简便?学生独立计算。

(2)第一题用乘法分配律进行简便计算大家都没有异议;第二题到底如何?两种方法都试试看,比较得出结论,其实用乘法分配律并不简单。

(3)第二题的数怎么改一下用乘法分配律就比较简单了呢?

(4)做了这两题,你有什么体会?

【设计意图】引导学生先观察后计算,有利于学生细心观察,养成良好的计算习惯。同时让学生通过计算自己感悟,并不是任何计算都是用乘法分配律简便。针对封闭的计算题采用了开放式教学,为计算练习注入了活力,学生兴趣高涨,思维活跃。

3.开放练习:在□中填上适当的数,使计算简便。

×15×□×+×□(+□)×□

【设计意图】开放式习题的设计,把学生所学的知识和已掌握的解题能力巧妙地融合在一起,既使学生巩固乘法运算定律的运用,弄清了知识之间的联系和区别,又使学生的知识得到了整合,提高了学生的发散思维能力。

四、课堂小结

通过本节课的学习,你掌握了哪些知识?

你是怎样获得这些知识的?

你还有哪些疑问?

五、随堂作业

独立完成教材第12页练习二的第12、13、14题。

篇13

1、分数乘法

第一课时分数乘整数

教学内容:教材第8页的例1,第9页的例2以及“做一做”,练习二中的第1、2题。

教学目标:让学生掌握分数乘正整数的计算方法,并能准确地进行计算。

重难点、关键

分数乘整数的计算方法。

教学准备:电脑课件

教学过程:一、旧知铺垫

1、计算下列各题

2/11+2/11+2/11

过程要求

(1)写出计算过程。

(2)说一说分数加法的计算方法。

2、想一想,能不能把2/11+2/11+2/11改写成乘法算式呢?

二、探索新知

1、教学例1

(1)出示例题

根据题意,电脑课件呈现示意图。

(2)根据题意列出解答算式:

2/11+2/11+2/11=2+2+2/11=6/11

2/11×3=6/11

(3)探索分数乘整数的计算方法。

师:2/11×3=,说一说你是怎么想的?

①学生在小组交流各自的想法

②小组讨论后反馈思维的过程和结果

教师板书:

③总结分数乘整数的计算方法。

A、学生口述分数乘整数的计算方法;

B、教师整理并板书:

分数乘整数,整数与分子相乘的乘积作分子,分母不变。

2、教学例2

计算:3/8×6

(1)学生独立计算。

(2)交流计算方法和步骤。

(3)比较计算过程,看一看哪一种更为简单

(3)归纳:能约分的要先约分,再计算。

三、巩固练习

1、完成课本“做一做”。

(1)学生独立完成,然后计算过程和结果。

(2)第3题,说一说你是怎样计算的?怎样想的?

一般要求学生列综合算式计算。如:

6/7×10×7==60(kg)

2、课本练习二第1、2题

四、课后作业设计

一、计算

7/8×73/4×81/9×31/2×4

5/6×55/18×327×2/33/816×

三、列式计算

1、3个5/8是多少?2、2/3的6倍是多少?

3、5/14扩大7倍以后是多少?4、5/6与24的积是多少?

课后反思:

第二课时分数乘分数

教学内容:教材第10页例3,第11页例4以及“做一做”,练习二中的3、4题

教学目标:

1、理解一个数乘分数就是求一个数的几分之几是多少。

2、掌握分数乘分数的计算方法,并能正确地进行计算。

重难点、关键:

1、重难点:分数乘分数的计算方法。

2、关键:理解一个数乘分数就是求一个数的几分之几是多少。

教学准备:实物投影或者电脑课件。

教学过程:

一、创设情境引入新课

教师谈话,以学校粉刷教室或家庭装修新房等学生身边的实例引入。

出示粉刷墙壁的画面,给出条件:每小时粉刷这面墙的1/5。

师:能提出什么问题?

学生提问题,教师板书。

以分数乘整数的问题作研究内容,如“4小时可以粉刷这面墙的几分之几?”

师:怎样列式?(板书1/5×4)

师:列式的依据是什么?为什么用乘法?(工作效率×工作时间=工作总量)

让学生计算,并说说怎样计算。

师:我们解决了4小时粉刷多少的问题,那么1/4小时可以粉刷这面墙的几分之几?(出示问题)怎样列式?依据是什么?

学生讨论汇报。(根据“4小时可以粉刷这面墙的几分之几”的列式类推出,或根据工作效率×工作时间=工作总量,可以列出1/5×1/4)。板书算式。

师:(结合板书讲解)我们已经知道求4小时粉刷这面墙的几分之几,就是求4个1/5是多少。求1/4小时粉刷这面墙的几分之几,就是求1/5的1/4是多少。那么1/5×1/4如何计算呢?这就是我们今天学习的内容。

板书课题:分数乘分数

二、操作探究计算算理

1师:下面我们来探讨分数乘分数怎样计算。我们每人准备了一张纸,把它看作这面墙,先在纸上涂出1小时粉刷的面积,应该涂出这张纸的几分之几?

学生操作。

学生交流是怎样涂的?(用折或量、分的方法把纸平均分成5份,涂出其中的1份,如下图)

师:我们已经知道,求1/4小时粉刷这面墙的几分之几,就是求1/5的1/4是多少。再涂出1/5的1/4,小组讨论一下,应该怎样涂?

小组汇报(把涂出的1/5部分再平均分成4份,涂出其中的1份)。

学生自己涂色。

师:从涂色的结果看,1/5的1/4占这张纸的几分之几?1/20

师:我们可以得到1/5×1/4=1/20。根据涂色的过程,你能说说是怎样得到的吗?

学生讨论交流汇报。

教师归纳(用多媒体或投影片演示涂色过程):我们先把这张纸平均分成5份,1份是这张纸的1/5,又把这1/5平均分成4份,也就是把这张纸平均分成了5×4=20份,1份是这张纸的1/20。由此可以得到(板书)。

  • 上一篇:钱塘江的导游词(精选8篇)
  • 下一篇:分数乘法说课稿(精选8篇)
  • 相关文章

    推荐文章

    本站专题